
A12
LOW CODE FOR CUSTOM ENTERPRISE SOFTWARE

2023.06 LTS

Legal notice

Authors:

Hamarz Mehmanesh

Sabine Gandenberger

Ansgar Weiss

Thomas Kneist

Sebastian Lorenz

Martin Backschat

mgm technology partners GmbH

Taunusstr. 23

80807 Munich

Germany

Tel: +49 (0)89 / 358 680-0

Jurisdiction and place of performance: Munich

All rights reserved.

Permission required for any reproduction, even excerpts.

© 2023 mgm technology partners GmbH

www.mgm-tp.com

Contents
1. Executive Summary
1.1 What is A12?
1.2 For Which Operational Scenarios Is A12 Designed?
1.3	 What	Benefits	Does	A12	Provide?

2. Motivation and Approach

2.1 From Micro Apps to Integrated Enterprise Applications
2.2					 The	True	Cost	of	Enterprise	Software	Development	
2.3					 Model-Driven	Development
2.4					 Digital	and	Data	Sovereignty

3. Plasma UI/UX Design System

3.1					 Efficient	User	Interfaces	for	Enterprise	Software
3.2					 Methodology	for	Coherent	User	Experience
3.3 Accessible Web Applications

4. Modeling Platform

4.1	 Modeling:	A	New	Software	Development	Discipline?	
4.2 The Modeling Concept of A12
4.3	 Advantages	of	“Data	First”	Modeling	with	the	
 A12 Rule Language
4.4 Modeling Tools for Data, Form and App Design
4.5	 Installer:	Using	Modeling	Tools	Locally

5. Runtime Platform

5.1	 A	Different	Range	of	Tasks	for	Developers
5.2 Architecture
5.3 Components
5.4	 Project	Template
5.5 Operations

6. Appendix A: Technologies

4

5
5
6

7

8
8

13
14

15

16
16
16

18

19
19
26

27
30

31

32
34
38
49
50

52

Executive Summary
A12	is	an	Enterprise	Low	Code	Platform	for	realizing	enterprise	
applications	in	complex	IT	landscapes.

This white paper presents the A12 approach and demonstrates how
it can be used to turn applications into fully integrated enterprise
applications that will work for a long time to come.

01

1. Executive Summary

Structure of the A12 Platform

For Which
Operational
Scenarios Is
A12 Designed?
A12	is	intended	for	professional	custom	software	devel-
opment	projects.	It	is	aimed	at	large	and	medium-sized	
companies, and public authorities that need highly scal-
able, secure, robust, and potentially business-critical
web applications.

This includes form-based applications, portals and ad-
ministrative	processes	for	the	public	sector,	underwrit-
ing platforms for industrial insurance, and integrated
solutions for online, retail and mail order businesses
(Multi-Channel).

Using	A12	 is	particularly	beneficial	 in	overarching	sce-
narios.	The	model-driven	approach	makes	it	possible	to	
use	the	modelled	business	expertise	across	all	applica-
tions.	 This	 ensures	 consistency,	 prevents	 duplication,	
simplifies	 release	 and	 dependency	 management	 and	
reduces	testing	overhead.

A12 Modeling Platform

Editor

Model types

Validation &
Calculation

Modular,	flexibly	applicable	client-	and	server-side	

components in a modern enterprise architecture

A12’s modeling platform	provides	tools	to	quickly	
create and maintain parts of an application with-
out programming skills.

A12’s runtime platform	provides	the	flexibility	to	de-
velop	low	code	applications	in	combination	with	pro-
fessional	custom	software	development	and	system	
integration	which	evolve	 into	 fully	 integrated	enter-
prise applications.

A12 Runtime Platform

A12

OVERVIEW
MODEL

OM

A12

APP
MODEL

AM

A12

TREE
MODEL

TM

A12

RELATIONSHIP
MODEL

RM

A12

FORM
MODEL

FM

A12

VALIDATION
LANGUAGE

VL

A12

SIMPLE
MODEL
EDITOR

SME

A12

DM
DOCUMENT
MODEL

E N G I N E S

C L I E N T

W I D G E T S

A12

W O R K F L O W S

D ATA S E R V I C E S

K E R N E L

U
A

A

A12

PM
PRINT
MODEL

5

1. Executive Summary

What Benefits Does A12 Provide?

Handling your business content yourself
Business	experts	and	analysts	can	use	the	modeling	tools	themselves	to	create	the	
software’s	domain-specific	core	and	maintain	it	in	the	long	term.	

• Adjust	business	aspects	without	programming	knowledge
• Implement business changes rapidly
• Automate	the	software	development	process	extensively

An open platform, not a closed ecosystem
A12	is	designed	as	an	open	system.	It	provides	an	enormous	amount	of	flexibility	
for	software	development,	long-term	maintenance	and	further	development.	

• Flexible	use	of	modular	runtime	components
• Systematic use of open source technology
• APIs	for	individual	extensions	at	any	level
• Full	operational	control	–	on-premises	or	(private)	cloud-based
• Requirements	can	be	entered	directly	into	the	A12	base

Future-proof platform for long-lasting software
The	consistent	separation	of	business-specific	models	and	technology	makes	it	
possible	to	retain	the	business-specific	core	even	in	the	case	of	technological	leaps.

• Detached	innovation	of	technology	through	model-based	approach
• “Data	First”	principle	for	sustainable	domain-oriented	modeling
• Careful technology selection and use of industry standards
• Continuous	development	of	the	technical	basis

6

Motivation and Approach
mgm’s goal is to faster and more economically build enter-
prise	software	that	is	robust,	secure	and	durable.	Our	expe-
rienced software engineers back up this claim. They work at
gradually	reducing	the	typical	expenditure	involved	in	devel-
oping	enterprise	applications.	This	is	first	and	foremost	done	
by	using	model-driven	abstractions	and	separating	business	
expertise	and	technology.

02

2. Motivation and Approach

From Micro Apps to Integrated Enterprise Applications
Many enterprise applications generally originate as
pragmatic makeshift solutions in separate business
departments. More often than not, they start off as
small	 Excel	 tables.	 They	 get	 bigger	 and	 bigger,	 in-
corporate macros and end up becoming almost like
applications	 themselves!	 This	 pragmatic	 approach	
(“shadow	 IT”)	has	 its	downsides,	 namely	major	data	
protection and IT security risks.

Low code platforms aim to eliminate the potential

breaches caused by makeshift solutions with appli-
cations.	 They	 give	 business	 departments	 the	 oppor-
tunity to build their own real applications, taking into
account	company-specific	IT	guidelines.	This	step	is	
perfect	 for	 those	makeshift	 solutions	 that	 have	 par-
ticular potential. Another challenge arises for another
subset of micro apps, of course, usually for the ones
that are most critical to business: they must be inte-
grated into a heterogeneous IT landscape. Most low
code platforms come with turnkey solutions for the

most	common	integration	scenarios.	But	they	do	have	
their	 limits.	 Custom	 development	 and	 professional	
system	integration	are	unavoidable.

A12 not only helps you with the transition to micro
applications,	 but	 also	with	moving	 towards	 integrat-
ed enterprise applications. In the long term, this is
where companies spend the most money: in the de-
velopment,	maintenance	and	operation	of	enterprise	
applications.

The True Cost of Enterprise Software Development
mgm	has	been	developing	custom	enterprise	software	
for	over	25	years.	The	core	concept	behind	A12	is	based	
on	a	series	of	observations	that	we	made	over	and	over	
on	 a	 wide	 variety	 of	 projects.	 Most	 importantly,	 the	
usual	cost	drivers	(business	adjustments	and	integra-
tions)	 that	occur	once	a	project	has	been	started	are	
constantly underestimated and can end up being the
reason	why	IT	projects	fail	over	the	long	term,	even	very	
large ones.

Enterprise domains – anything but standard

Every	 enterprise	 software	 program	 models	 a	 certain	
aspect of a company’s reality. The particular model
is based on the enterprise domain. The enterprise do-
main comprises a set of (enterprise) entities. These
might be things like clients, products or orders. Each
of these entities is represented by an entity model in
the	 software.	 This	 model	 defines	 the	 entity’s	 struc-
ture, attributes and relationships with other entities.
Entity	models	are	subject	to	constant	change,	which	is	
often	a	major	cost	driver	in	enterprise	software	devel-
opment.

The following points are primarily
responsible for change:

�	 A	growing	business	is	a	complex	network.	All	the		
 company knowledge is spread out in different people’s
	 brains.	There	are	many	factors	that	influence	the		
	 business	that	individual	company	representatives	deal		
	 with	over	and	over	again.

� The company continues growing. The portfolio changes.
 New distribution channels are added; others are eliminated.
	 Different	branches	have	to	adhere	to	new	regulatory		
	 requirements.

� Each company organises their business in their
	 own	way	depending	on	a	variety	of	different	rules.		
 What’s more, they all use their own terminology, which
 is constantly growing and changing.

8

Models	are	yet	another	cost	driver.	Models	gradually	
get	more	 complex.	 They	map	 aspects	 of	 reality	 that	
are	constantly	growing	and	that	are	relevant	to	the	re-
spective	enterprise	domain’s	success.	

The	figure	 illustrates	 just	how	complex	 they	can	get,	
for	example	when	mapping	a	tax	form.

2. Motivation and Approach

And so, the models on which different
enterprise software programs are based
do not follow the same standards.
On the contrary, they are highly individual-
ised, always have exceptions and some-
times even inconsistencies.

9

Enterprise IT and Shadow IT

Classic Enterprise IT in companies is structured centrally. The standard software and all
custom-developed	software	used	must	comply	with	certain	standards.	But	people	are	finding	
more	and	more	solutions	outside	enterprise	IT	for	department-specific	requirements.	They	
are	created	as	Excel-based	solutions	or	basic	micro	apps,	for	example.	This	often	happens	
without telling the IT department. And thus shadow IT is created.

Shadow IT

Micro app
low code

cloud solutionEnterprise IT
C O M P L I A N C E

S TA N D A R D S

S E C U R I T Y

Enterprise business
department

Excel App

Excel App
Excel App

Cloud
soiution

Enterprise low code development

If departments can design their own applications with the right low code tools and the IT
department can secure the technology and standards centrally at the same time, enter-
prise	applications	with	true	value	can	be	created.	The	low	code	part	can	be	individually	
weighted	depending	on	the	project.	The	goal	is	to	get	the	department	and	IT	experts	
working	together	effectively.

Enterprise IT
C O M P L I A N C E

S TA N D A R D S

S E C U R I T Y

Models
+

low code

Custom
development

System
integration

Business
department low

code editor

LC Business
department low

code editor

LC

Business
department low

code editor

LC

E
N

T
E

R
P

R
IS

E
 L

O
W

 C
O

D
E

S
T

A
N

D
A

R
D

 L
O

W
 C

O
D

E

Business experts

IT experts

IT experts

Operations

App is
ready

Dynamic weighting of low code and custom development

Custom	Enterprise	Projects	require	project-specific	and	customised	methods.	There	can	be	a	lot	of	
variation	in	the	weighting	of	low	code	and	custom	development	from	project	to	project.	But	the	weight-
ing	can	also	vary	considerably	throughout	the	different	life	cycle	phases	of	an	IT	project.

S TA N D A R D S O F T W A R E I N D I V I D U A L S O F T W A R E

Business
department low code

editor

Custom
development

System
integration

Models
+

low code

Enterprise IT
C O M P L I A N C E

S TA N D A R D S

S E C U R I T Y

LC

Business
department low code

editor

LC

Business
department low code

editor

Business
department low code

editor

LC

1 2 3 4 5 6 7

Different Representations
of Enterprise Entities

The business model is the starting point. It is a model for
implementation	 –	 the	 first	 representation	 of	 the	modelled	
enterprise entities and their relationships to each other.
The following representations occur in a
three-tier architecture:

�	 The	enterprise	objects	are	stored	in	a	database	in	the		
 data tier. Therefore, the representation needs to meet
	 the	requirements	of	this	persistence	level	(1). The data
 is presented in tabular form in a relational database.
	 Object-relational	mapping	is	required	so	that	the	table		
	 data	can	be	processed	in	an	object-oriented	high-level		
	 language	like	Java	(2).

� The application logic is stored in the business tier.
 It has its own representation (3), which results from
	 the	respective	processing	of	the	enterprise	objects,		
	 components	and	workflows.	

� The presentation tier	requires	yet	another		 	
 representation (4). This deals with how the enterprise
 entities are presented in the user interface and how you
 can interact with them.

In addition, further representations and mappings of the
enterprise entities are necessary in the following contexts:

�	 Providing	services	for	specific	functionalities	– for
	 example,	checking	stock	(5).
� Generating Word or PDF documents such as insurance
	 policies	and	administrative	notices	(6).

� Integrating the application into other systems in the
 company’s IT infrastructure (7).

� Extensive migrations, that become necessary due
	 to	further	developments	of	the	schema	of	the	underlying		
 database (8).

Any	change	 in	an	enterprise	entity	 leads	 to	more	ex-
penditure	from	a	software	development	point	of	view.	
Why?	Because	they	have	to	be	represented	differently	
in	 different	 technical	 contexts.	 And	 you	 need	 map-
pings between these different representations. In
practice, one tiny business change can create a dom-
ino	effect	of	adjustments	that	need	to	be	made	to	the	
software.

The	figure	 to	 the	 right	gives	an	overview	of	 the	 vari-
ous representations and mappings that are generally
found in enterprise software.

Business
model

Enterprise object

OR mapping

Persistence
S C H E M E V1

Interface

Output

Integration

Migration
S C H E M E V 2

Functional
building blocks

D
A

T
A

P
R

E
S

E
N

T
A

T
IO

N
B

U
S

IN
E

S
S

2. Motivation and Approach

11

The IT landscape of medium-sized to large companies
across	 all	 industries	 all	 have	 one	 thing	 in	 common.	
They	comprise	large	applications	such	as	SAP	or	larger	
custom	applications	with	a	variety	of	smaller	ones.	In	
a perfect world, all applications would be fully integrat-
ed	with	regard	to	their	involvement	in	processing	busi-
ness	transactions	and	data	exchange.	But,	because	the	
technologies	used	in	applications	are	so	different	(SAP,	
Java	 applications,	 cloud-based	 applications,	 etc.),	
these IT landscapes are usually built on a technological
basis that remains heterogeneous.	More	 specifically,	
this means that:

�	 Individual	applications	in	this	landscape	usually			
	 have	their	own	project	team,	release	cycles	and		 	
 technology bases.

� Different technology and architecture decisions
 are made for custom applications depending on the
	 application’s	age	and	the	project	team’s	preferences		
 and decisions. This also applies to integrated
 applications that are based on applications such as
	 SAP	or	MS	Dynamics.

�	 Different	applications	usually	also	have	different		
 contact persons on the business side of things.
	 These	people	draft	the	business	specifications	for	the		
	 application’s	initial	and	subsequent	development.

The heterogeneity of the IT landscape is another cost
driver	 that	 even	 today’s	 low	 code	 approaches	 cannot	
completely	resolve.	Custom	development	work	can	be	
reduced,	but	not	completely	done	away	with.	Even	if	en-
terprise applications start off small, integration issues
usually arise sooner rather than later as applications
can only reach their full potential if they are integrated.

Heterogeneous IT Landscapes

Each of these representations comes with its own set of challenges and
costs. Some of them only become apparent after a while.

For	example,	the	figure	shows	the	fact	that	enterprise	applications	do	not	
usually stand alone. And when they do, it’s usually not for long.

On	 the	contrary,	 they	are	usually	 integrated	 into	complex	 IT	 landscapes	
and only realise their full potential when they are linked to a range of inter-
nal	and	external	applications.

2. Motivation and Approach

12

The many different representations of enterprise enti-
ties	in	the	various	software	tiers	are	major	cost	drivers	
in	enterprise	software	development.	How	can	the	cost	
of mapping these representations be reduced? Mod-
el-driven	software	development	provides	an	answer	to	
this	question.	The	idea	behind	it	is	modelling	enterprise	
entities and their relationships to each other. These
models	 can	 be	 defined	 and	 adjusted	 using	 specialist	
editing tools.

Special interpreters and code generators translate the
models into the application.

The kicker is that the elaborate mapping of different
representations no longer needs to be done by hand.
The generators and interpreters do it. This means that
business	content,	which	is	subject	to	constant	changes	
in	enterprise	software,	as	previously	mentioned,	can	be	
displayed	in	the	software	much	more	quickly	and	with	
less	overhead.

Model-Driven
Development Advantages of Model-Based Development

� On-schedule implementation
	 Model-based	development	makes	it	possible	for	IT	systems	to	be		 	
	 implemented	and	delivered	on	time,	even	when	business		 	 	
	 requirements	change	frequently.	

�	 Simplified	dependency	management
	 Model-based	overall	architecture	simplifies	managing	dependencies.		
	 This	makes	it	possible	to	separate	business	expertise	and	technical		 	
 framework into separate release cycles. Furthermore, business
	 expertise	can	be	broken	down	into	specific	models	for	each	version		 	
	 and	data	type.	Each	of	these	models	is	explicitly	versioned,	but	is	not			
	 dependent	on	version	and	data	type.	Business	changes	can	also	go		 	
	 live	independently	of	each	other	for	each	data	type	and	version.	

� Less testing overhead
	 Testing	can	be	extremely	costly	for	custom-developed	software	that		 	
	 is	constantly	being	changed.	Each	version,	data	type	and	change		 	
	 must	be	tested	separately	for	each	product.	However,	model-based		 	
	 development	reduces	the	need	for	business	testing,	which	is	limited		 	
 to the models.

� Clear path for technical innovation
	 As	business	expertise	and	technology	are	separate,	technical		 	
	 innovations	can	be	made	without	having	to	consider	all	of	the		 	
	 application’s	technical	content.	For	example,	you	can		 	 	
 roll out new technology in the user interface design and
	 implementation,	in	persistence	or	in	server	processing.

2. Motivation and Approach

13

As a long term partner of public administrations, we
support	 our	 customers	 in	 their	 desire	 for	 a	 self-suffi-
cient approach to software. Business departments can
do	this	with	A12;	they	can	keep	full	control,	even	when	
the	applications	are	highly	complex	and	integrated.

Control over business expertise - technology inter-
changeability

The	 strict	 division	 between	 business	 expertise	 and	
technology	 provides	 great	 flexibility	 for	 further	 soft-
ware	 development	 over	 the	 long	 term.	 The	 business	
models make up the software’s core; they can also be
adjusted	and	developed	without	the	help	of	a	software	
developer.	 They	 are	 available	 as	 simple,	 open	 format	
JSON	files.

This separation of the business content makes it much
easier to change the technology. This would not be the
case	 if	 the	business	aspects	were	closely	 interwoven	
into	the	code.	One	particular	advantage	is	that	the	code	
does not need to be completely rewritten with each
technical	innovation.	It	is	much	easier	to	keep	the	tech-
nology up to date.

Control over data

For business-critical software, it is essential that sensi-
tive	data	is	stored	in	a	trustworthy,	secure	environment	
and	that	smooth	operation	is	guaranteed.	We	know	just	
how	important	it	is	to	have	control	over	your	business;	
we	see	this	over	and	over	again	with	our	customers	in	
the e-commerce sector. During periods of higher de-
mand,	like	around	Christmas,	the	systems	run	at	maxi-
mum load for a long time without any downtime. Which
is why, on the one hand, software must be scalable and
high	performance,	while	on	the	other,	sole	control	over	
the underlying infrastructure and the release stages in-
volved	is	also	necessary.

Digital and Data Sovereignty
We offer the following options
for A12 installation:

� On-premises operation in the
 company’s own data centre

� Operation on mgm’s private cloud,
 hosted in a German data centre

� Cloud operation with
 any cloud provider

2. Motivation and Approach

14

Plasma UI/UX Design System
Enterprise applications are characterised by high information
density	and	great	complexity.	Design	languages	such	as	Mate-
rial	Design	hit	their	limits	quickly.	They	cannot	fully	respond	to	
some	challenges,	such	as	how	to	present	complex	tables,	clear-
ly.	Or	how	to	develop	the	user	interface	structure	consistently	
when	new	information	is	added.	This	is	why	mgm	developed	
A12’s	Plasma	design	system.

03

3. Plasma UI/UX design system

Efficient User
Interfaces for
Enterprise Software
Plasma	comprises	a	variety	of	UI/UX	components,	us-
age patterns and design guidelines that can be used
to	design	consistent,	 efficient	and	attractive	user	 in-
terfaces.	And	thus	Plasma	provides	solutions	for	two	
of	the	main	UI	requirements	in	enterprise	applications:	
scalability	and	complexity.	

One	of	the	main	ideas	behind	Plasma	is	to	reduce	the	
represented information density as much as possible.
Ideally, users are only presented with what they really
need for the tasks at hand. They can work faster and
more	efficiently.

Methodology for
Coherent User
Experience

Accessible Web
Applications

Plasma	 also	 has	 a	 variety	 of	 reusable	 models	 and	
components	 for	 requirements	 that	 appear	 repeatedly	
in enterprise application user interfaces – from log-in
screens	to	validating	user	input.	This	includes	models	
for	the	application	framework,	navigation	elements	and	
notifications,	 as	 well	 as	 concepts	 for	 handling	 enter-
prise	objects	and	the	standard	workflows	in	which	they	
are integrated.

The importance of accessibility in web applications is
increasing.	 For	 several	 years	 now,	 public	 authorities	
within	the	EU	have	been	obliged	to	make	websites	and	
mobile applications accessible. From 2025, according
to	the	European	Accessibility	Act,	with	a	few	exceptions	
all websites and web applications must be accessible.
With	 Plasma,	 the	 A12	 platform	 is	 explicitly	 designed	
for	building	accessible	web	applications.	Numerous	UI	
components	 -	 including	 the	model-driven	 engines	 for	
forms	 and	 overviews	 -	 are	 accessible	 out-of-the-box.	
However,	in	the	project	practice	of	individual	software	
development,	 there	 are	 always	 additional	 aspects	 to	
consider.	 There	 are	 specific	 requirements	 that	 a	 Low	
Code	platform	per	 se	cannot	 cover.	 For	 this	purpose,	
the	 A12	 team	 offers	 projects	 practical	 assistance	 in	
the form of a regularly updated guide. It contains, for
example,	background	information	on	accessibility	cer-
tification,	design	specifications,	 and	 requirements	 for	
modeling	and	development.	

16

Unlike pure design languages like Material Design, Plasma also includes an
extended range of functions which enterprise applications usually require.
The figure provides an example of the overall concept for tables and all
common features. We have already implemented some of these features in
Plasma; others are still in progress.

The A12 Widgets showcase provides examples of all Plasma components.

3. Plasma UI/UX design system

A12 Widget Showcase
https://a12.mgm-tp.com/showcase/#/

17

Modeling Platform
The	A12	modeling	platform	provides	several	modeling	tools	and	a	rule	
language	that	can	be	used	to	map	high	levels	of	business	complexi-
ty	for	enterprise	applications.	The	following	sections	provide	a	brief	
introduction to the modeling philosophy of A12 and introduce the main
models and tools.

04

4. Modeling Platform

Modeling:
A New Software
Development
Discipline?
The	first	step	in	the	traditional	development	process	in-
volves	business	analysts	and	the	business	department	
working	together	to	draft	the	requirements	for	the	soft-
ware	to	be	developed.	Then,	they	describe	the	require-
ments	in	prose	and	give	them	to	the	development	team.	
We	still	use	this	traditional	requirements	analysis	form	
for	projects	that	are	based	on	A12	–	albeit	to	a	lesser	
extent.	But	there	is	also	another	role:	business	analysts	
and	experts	can	use	modeling	tools	to	design	and	ad-
just	large	parts	of	the	application	independently.	They	
get	 much	more	 creative	 leeway	 and	 become Co-De-
velopers/Citizen Developers.	The	adjacent	figure	illus-
trates the differences between the two approaches.

In	most	projects,	mgm	provides	business	analysts	as	
part	 of	 the	 development	 team.	 This	 is	 beneficial	 as	
they are already familiar with the modeling tools and
techniques.	Customer-side	business	experts	are	usu-
ally	involved	from	the	beginning	of	the	project.	After	an	
introduction to the modeling tools, they are then in a
position	to	adjust	essential	parts	of	the	application	on	
their own.

The classic role allocation is shown on the left. Role allocation in

the model-based approach is shown on the right.

The business analyst helps the developer by independently

designing parts of the application.

Classic
development

process

A12
development

process

Business
Analyst

Business
AnalystDeveloper

Java Engine
(JVM)

Application

Java IDE Business
Editor

Application

Business
Analyst

Developer

Java IDE

Business
Engine

Java Engine
(JVM)

Empowered
Role in value
chain process

The Modeling
Concept of A12
The modeling approach of A12 differs in one essential
point from the modeling approaches of other low code
platforms:	A12	follows	the	“data	first”	modeling	paradigm.	

Instead of starting with clicking together a user inter-
face,	 A12	modeling	 starts	with	 the	 definition	 of	 busi-
ness relationships.

The	 decisive	 advantage	 of	 this	 approach	 is	 the	 clear	
separation of the domain description from a specif-
ic application. This creates synergies through the
cross-application	and	cross-context	use	of	domain	ex-
pertise	and	great	flexibility	for	the	further	development	
and	maintenance	of	long-lived	enterprise	software.

19

4. Modeling Platform

Main Modeling Dimensions

UI modeling
• Form models Long-arrow-alt-right Forms
• Overview	models	Long-arrow-alt-right Tables
• Tree models Long-arrow-alt-right Hierarchies

E E E

Data modeling
• Document model
• Relationship model
• Validation rules
• Calculations

DM

DM

DM

RM

App modeling
• Application framework

Workflow	modeling
• Business	processes	based	on	BPMN	2.0		
	 (Business	Process	Model	and	Notation)

20

Modeling Business
Expertise and
Application Logic

Defining	the	enterprise	entities	and	their	relationships	
to each other in data models is an essential modeling
task.	 Business	 analysts	 and	 experts	 can	 use	 a	mod-
eling	 tool	 to	 create	 and	 adjust	 the	 data	 structures	 of	
mapped entities, such as contracts or products.
They can also use an integrated kernel language to de-
fine	validation rules and computations, i.e. to map the
application logic. Relationship models can be used to
describe links between data models.

Modeling	 business-specific	 aspects	 keeps	 business	
expertise	 and	 technology	 separate	 from	 each	 other.	
Business	 content	 can	 be	 modified	 without	 any	 tech-
nical	 adjustments	 being	 needed.	 The	 technology	 can	
be	developed	further	without	all	 the	business	content	
having	to	be	adjusted.	We	are	confident	that	this	sepa-
ration	of	business	expertise	and	technology	will	shape	
the	future	of	enterprise	software	development.	It	accel-
erates	development,	prevents	costly	reimplementation	
and makes it possible to adapt to changes rapidly.

4. Modeling Platform

Relationship between modeling aspects
and technical A12 products

The	rule	language	for	validations	and	
calculations is implemented in the
technical A12 component Kernel

1 The term “document model” indicates that technical han-
dling is document-oriented. In terms of content, document
models describe any «entities» that can also be understood
as part of a technical knowledge base.

App model

Form- / Overview- / Tree model

Rule language

E N G I N E S

C L I E N T

W I D G E T S

A12

W O R K F L O W S

D ATA S E R V I C E S

K E R N E L

U
A

A

RIGHT-LONG see also p. 43.

21

The modeling does not follow a what-you-see-is-what-
you-get principle. Instead, the models describe the un-
derlying structures of the user interface. This has the
advantage	that	the	models	are	again	independent	of	the	
technical implementation. The plasma design system
is used for the actual representation. It ensures a co-
herent	representation	and	a	coherent	user	experience.

UI	models	usually	refer	to	A12	data	models.	They	estab-
lish	connections	between	the	fields	of	data	models	and	
UI	elements.	Let’s	take	an	input	field	as	an	example:	A	
UI	model	describes	its	position	in	a	form,	its	label,	and	
possibly	 additional	 user	 instructions	 in	 a	 text	 field.	 A	
data	model	specifies	the	underlying	data	type	and	val-
idation rules.

Modeling of User Interfaces

Based on the data models, business analysts are able
to	 create	 specific	 parts	 of	 the	 user	 interfaces	 using	
A12’s modeling tools.

The modeling of the user interfaces is currently limit-
ed	to	the	areas	in	which	model-driven	components	are	
used.	A	number	of	special	UI	models	are	available	for	
this purpose:

4. Modeling Platform

For each UI model, A12 provides
a corresponding engine -
the Form Engine, the Overview
Engine and the Tree Engine. They
bring the models to life in an
application.

Tree
models

Overview
models
provide	many	possi-
bilities for presenting
tabular data.

are used to display and
edit data structures
hierarchically.

define	the	structure	and	
content of online forms.

Form
models

FM OM TM RIGHT-LONG Read more on p. 41.

22

4. Modeling Platform

In	 the	context	of	business	applications,	 the	challenge	
of	generating	PDF	documents	arises	again	and	again	
-	whether	it	is	a	contract	in	the	insurance	environment,	
a	proof	of	invoice	in	an	online	marketplace	or	the	noti-
fication	of	a	government	service.	With	A12’s	Print	En-
gine Template Editor, print templates can be created
in	an	editor,	saved	as	print	models	and	easily	brought	
into	A12	applications.	The	resulting	PDFs	are	compliant	

with	the	PDF/A	standard	and	therefore	accessible.	The	
editor	enables	the	convenient	design	of	pages	and	sec-
tions	by	adding	and	placing	 individual	 elements	such	
as	text	and	images	using	drag	&	drop.	Fields,	calcula-
tions and tables can also be inserted directly, which re-
fer	to	selected	A12	document	models	and	are	filled	with	
the corresponding stored data.

Modeling Print Templates

Modeling Workflows
For	modeling	business	processes,	A12	relies	on	BPMN	
2.0	(Business	Process	Model	and	Notation),	an	existing,	
established standard. The modeled business processes
fit	seamlessly	into	the	modeling	concept	of	A12.	Docu-
ment models describe the data used by a process. With
the	help	of	form	models,	the	respective	user	tasks	can	
be implemented in detail.

Modeling the Structure
of an Application
The	 framework	of	an	application	can	be	defined	with	
an App Model. It acts as a kind of container for all other
models.

The	app	model	offers	configurations	
for certain functionalities of the tech-
nical component Client (see p. 42).

23

More Complex Modeling:
Composed Document
Models

With Composed Document Models (CDMs) it is possible
to use several document models in one engine	-	provided	
that	there	is	a	relationship	between	the	models	(defined	
in a Relationship Model). Thanks to CDMs, a form can be
fed	with	data	defined	in	completely	different	models.	The	
modeling	concept	of	A12	gains	significantly	 in	flexibility	
and	expressiveness	through	CDMs.	

Since	 the	 release	 2021.06	 a	 first	 experimental	 version	
is	available.	It	enables	the	definition	of	CDMs	and	CDM-
based	forms	with	the	existing	modeling	tools,	into	which	
fields	 from	different	document	models	can	be	brought.	
Cross-model	 validation	 rules	 and	 calculations	 are	 sup-
ported.

4. Modeling Platform

E N G I N E 1

A12

DOCUMENT
MODEL

Document

Model 1

A12

DOCUMENT
MODEL

A12

DOCUMENT
MODEL

A12

DOCUMENT
MODELA12

DOCUMENT
MODEL

Document

Model 2

Document

Model 3

Document

Model 4

Document

Model 5

E N G I N E 2

24

C AT E G O R Y N A M E D E S C R I P T I O N

Data Model Document Model
A12	document	models	contain	field	definitions	and	associated	validation	rules	in	a	hierarchy	of	
groups.	Validation	rules	range	from	simple	constraints	-	e.g.,	the	definition	of	mandatory	fields	-	
to	complex	patterns	and	conditions	across	multiple	fields.

Relationship Model Relationship models describe links between documents.
They model the relationship properties and constraints.

UI Model Form Model
Form	models	define	the	structures	and	contents	of	online	forms.	A12	forms	consist	of	common	
UI	elements	such	as	input	fields,	buttons,	labels,	checkboxes,	etc.	The	modeling	tools	provide	
powerful ways to organize these elements.

Overview Model Overview	models	offer	various	possibilities	for	tabular	presentation	of	data.

Tree Model Tree models allow data structures to be displayed and edited hierarchically.

Workflow BPMN 2.0 A12	supports	modeling	of	business	processes	in	the	BPMN	(Business	Process	Model	and	Notation)	
standard.	BPMN	models	interact	seamlessly	with	A12	models.

App Model App Model An	app	model	defines	the	framework	of	the	application	and	acts	as	a	kind	of	container	for	all	
other models.

Output Model Print Model The	Print	Model	can	be	used	to	create	print	templates	for	the	generation	of	accessible	PDFs.

The Model Types of A12

4. Modeling Platform

25

Business	experts	and	analysts	can	create	and	modify	
domain-specific	models	for	enterprise	applications	us-
ing A12’s data modeling tools. No programming knowl-
edge	necessary!	Data	models	encapsulate	 the	central	
aspects of the enterprise logic. They describe the enti-
ties with which enterprise applications operate, such as
contracts and products with all their properties.

The use of data models
has several advantages:

�	 Reduced	development	costs	and	customisable		 	
 applications

�	 Business	experts	can	modify	the	applications		 	
	 on	their	own.	Developers	are	not	needed	to		 	
	 rework	the	implementation	every	single		 	
 time there is a change in the enterprise domain.

�	 The	explicit	direct	storage	in	models	makes		 	
 it possible to search for and research business
	 expertise.	This	also	provides,	for	example,		 	
	 explicit	traceability	of	business	changes.

�	 Improved	reusability	and	independence		 	
 from technologies

An important part of data modeling in A12 is the rule
language for validations and computations. Based on
business	requirements,	it	enables	the	definition	of	rules	
that	cover	all	conceivable	field-related	validation	tasks.	
The	 most	 comprehensive	 data	 validation	 possible	 is	
crucial	to	avoid	security	risks	and	to	ensure	data	integ-
rity in business applications.

The	language	contains	many	predefined	predicates.	 It	
supports nested comparisons, arithmetic operations
and	provides	special	 operators	 for	 handling	elements	
like dates. It also supports special conditions for check-
ing	 in	 which	 configuration	 fields	 may	 or	 may	 not	 be	
specified.	 The	 various	 subconditions	 and	 operations	
can be combined.

The modeling tools for document models support the
language directly. It has been successfully deployed for
years	 in	 large	 productive	 software	 systems.	 Our	 cus-
tomers	use	 it	 in	many	projects	 to	 independently	man-
age	validation	rules	and	computations.

The language combines the simplicity of the proposi-
tional	 logic	 with	 the	 expressiveness	 of	 the	 predicate	
logic. It is particularly well suited for forms and strong
typing in business domains.

Advantages of “Data First”
Modeling With the A12 Rule Language

4. Modeling Platform

Creating a rule in SME

SME

26

M O D E L A B L E W I T H A12 I N D I V I D U A L LY R E A L I Z A B L E

Domain expertise -
data models with validation
rules and calculations

complex algorithms (e.g. generic
premium calculator in the insurance
environment)

Frame of an application
including placement of
model-driven engines

placement of
simple widgets

Forms, including
repeatable structures

definition	or	adaptation	of	design	
elements

Tabular overviews
of data sets

Tree-like overviews
of data sets

Relationships between
different model-driven components

Workflows	following	the	
BPMN 2.0 standard

The rule language has the
following key features:

� Rule conditions describe errors — the end-user is thus shown messages related to the
	 specific	error	scenario	

�	 Use	of	logical	connectives	‘And’	and	‘Or’	to	combine	different	subconditions

�	 Negation	operations	are	not	used.	Instead,	the	different	predefined	conditions	are	each		
	 provided	in	positive	and	negative	form.	This	ensures	that	the	subconditions	are	simpler		
 and are compiled in a more uniformly structured way. This makes the rule conditions
 more readable and clearer.

�	 Predicate	logic	quantifiers	are	not	provided	as	formally	logical	parts	of	the	language	but		
	 implicitly	via	operations.	This	ensures	that	the	conditions	are	based	on	an	expert’s		
 formulations and are therefore easier to understand.

�	 The	rule	languages’	logic	operations	allow	the	tree	and	repetitive	structures	to	be		
	 queried	directly

�	 Supports	set	and	filter	operations	on	tree	structures	and	repetitive	structures,	e.g.	“add		
	 up	all	capital	gains	from	all		equity	funds”

�	 Facilitate	iterations	via	repetitive	structures	and	shorten	the	control	conditions

�	 Computations	and	validations	based	on	the	same	language,	so	the	full	validation		
 language can also be used for computation preconditions. All of the language’s set and
	 filter	operations	are	available	for	formulating	the	computation	operations	and	values		
	 can	be	computed	for	all	predefined	field	types

4. Modeling Platform Features:

�	 A	powerful	and	versatile	validation	 and	computation	language

�	 Auto-completion	and	syntax	highlighting

�	 Predefined	predicates	for	fields,	lists	of	fields	and	groups	that	can	be		
 combined freely

� Arithmetic operations, comparisons, special operators for processing

27

Modeling Tools
for Data, Form
and App Design

4. Modeling Platform

The central modeling tool of A12 is the A12 Simple
Model Editor (SME). It facilitates the editing of all A12
model types.

Simple Model Editor (SME)

The Simple Model Editor (SME) forms the control cen-
ter for modeling in A12. A noteworthy thing about it
is that the SME was built as a tool for A12 itself with
A12.	With	the	Workspace	Explorer	of	the	SME	all	rele-
vant	models	of	a	project	can	be	comfortably	managed,	
new	models	can	be	added	and	existing	models	can	be	
edited.	The	models	in	the	workspace	can	be	exported	
individually	or	bundled	or	deployed	directly	on	a	server.

SME

The functional scope of the SME is continuously being de-
veloped	further.	In	addition	to	textual	modeling,	the	tool		
also	offers	visual	support	for	modeling	relationships	with	
the Diagram Editor.

4. Modeling Platform

29

The	version	number	of	the	
installer corresponds to the
version	number	of	the	
overall	release.

4. Modeling Platform

Installer:
Using Modeling
Tools Locally
To be able to use the modeling tools of A12 locally, the
A12 Installer	is	available.	It	bundles	all	relevant	tools	in	
one	installation	file.	The	installer	is	provided	with	each		
release	of	A12	for	Windows	10,	macOS	and	Ubuntu	Linux.	

After installation, all modeling tools are ready for im-
mediate use.

A set of included sample apps makes it easy to get
started	 and	 provides	 a	 starting	 point	 for	 your	 own	
modeled	apps.	With	the	help	of	the	included	Preview	
App	 Control,	 modeled	 programs	 (preview	 apps)	 can	
be	executed	locally	in	the	browser.	The	Model	Updat-
er	enables	convenient	migration	of	models	based	on	
older	A12	versions.

PA R T S O F T H E I N S TA L L E R D E S C R I P T I O N

Simple Model Editor (SME) Modular tool that bundles numerous modeling functionalities of A12

Camunda Modeler Tool	for	modeling	workflows

Preview App Control Application for running A12 applications in the browser

Model Updater Migration tool for updating existing, older A12 models

Workspaces Sample applications (preview apps) that demonstrate the modeling scope

Dokumentation
Reference to existing online documentation, which can optionally
be installed locally as well

With the help of the Model
Updater, existing models
can be easily migrated to
the latest version.

UP

30

Runtime Platform
The A12 runtime platform consists of a set of mod-
ular	client	and	server	side	components	in	a	modern	
enterprise	architecture.	It	provides	robust	compo-
nents	for	typical	enterprise	application	requirements.	
At	the	same	time,	it	gives	the	development	team	
full	control	through	fine-grained	entry	points	to	plug	
in	their	own	code	and	implement	individual	project	
requirements.

05

5. Runtime Platform

A Different Range of
Tasks for Developers
The	model-driven	approach	also	comes	with	a	variety	
of	 changes	 for	 developers,	 too.	 They	 are	 no	 longer	
solely responsible for building the whole application.
Their workload is smaller, especially in relation to han-
dling business changes. The application can be com-
pared to a play; the models designed by the business
analysts are like the protagonists in the limelight. The
developers,	however,	make	 it	possible	for	 the	play	to	
be performed at all. They prepare the stage and make
sure that the protagonists are shown in the best light.

Modeled business expertise reduces workload

In	 a	 conventional	 software	 project,	 the	 development	
team is responsible for coding the whole application
on their own. To do this, the team must understand
the idea behind the application down to the smallest
detail.	But	that’s	a	massive	challenge	for	highly	com-
plex	application	fields,	 such	as	 taxation	or	 industrial	
insurance.

The model-driven approach changes this
situation. Business analysts and experts
map the business logic in models and put
them directly into the software.

This	greatly	lessens	the	developers’	load.	They	no	lon-
ger need to understand the modeled business aspects
nor implement it by hand. The focus of the work shifts.

Connecting, maintaining and
extending the application platform

Projects	based	on	A12	do	not	start	off	as	greenfield	
projects.	They	build	on	an	existing	foundation.	This	
foundation	isn’t	static;	it’s	being	constantly	devel-
oped.	One	of	the	main	things	that	the	developers	
have	to	do	is	to	connect	the	foundation	(the	project’s	
A12 application platform), maintain it and, if neces-
sary,	extend	it	individually.	The	Technical	Profession-
al	Services	Team	provides	support.

More complex functions and integration work

Developers	also	write	code	that	implements	more		
complex	functions.	An	example	of	this	is	a	complex	
computation	that	goes	beyond	the	existing	scope	of	
the modelling tools. Furthermore, one task still left to
the	developers	is	to	integrate	the	application	into	the	
existing	heterogeneous	IT	landscape.

32

Traditional Approach vs. Model-Based Approach

Traditional
approach

Changes

Customer Idea Requirement Understand
business details Implementation Result

D E V E L O P M E N T
T E A M

D E V E L O P M E N T
T E A M

B U S I N E S S
A N A LY S T S C U S T O M E R

Model-based
approach

Customer Idea
Business Analysts

A12-
M O D E L S D E V

Customer’s experts

Versions
Results

Customer /
Expert
approaches
Business
Analyst

The customer
and BA imple-
ment the idea
together directly
in a model.

The result
is immediately
visible	and	can	
be	improved	in	
an agile process.

DEV Team
develops	
highly
individual
functions.

Integrated
Enterprise
application

�	 Requirements	in	Models	 	

�	 Develop	together	

�	 Result	visible	immediately	

� Agile and fast

5. Runtime Platform

5. Runtime Platform

Architecture
The	development	process	of	business	applications	is	
continuously shaped by technological changes. A12
meets these challenges and offers a runtime platform
for modern, web-based business applications. Start-
ing from a robust core and modular solution modules,
we	 continuously	 advance	 this	 platform	on	 all	 levels.	
For this purpose, we adapt new technologies and
paradigms, as long as they contribute to the goal of
making	the	development	of	high-quality	business	ap-
plications	easier,	more	efficient	and	more	sustainable.

We	 benefit	 from	 an	 important	 capability	 of	 the	 low-
code	 approach:	 many	 of	 the	most	 complex	 and	 im-
portant aspects of the application are modeled in
A12	and	can	thus	be	expressed	in	a	largely	technolo-
gy-neutral	way.	In	fact,	even	complex	forms	solutions	
survive	 the	 technology	 shift	 from	 JSPs	 and	 XForms	
(2012 and earlier) to Angular (circa 2015) to React
(2017	and	 later).	The	necessary	 foundations	 -	 the	UI	
engines as runtime interpreters of models - change,
but the models remain.

The A12 Client Framework addresses	the	complexity	
and challenges of modern web applications using the
single-page	application	(SPA)	approach.	It	is	also	the	
basis	for	quickly	building	modularized	frontends	(Mi-
crofrontends).	It	leverages	the	modern	and	proven	Re-
act/Redux	 technology	 stack,	 integrates	A12	UI	 com-
ponents such as Engines and Widgets, and interacts
with	A12	backend	services	such	as	A12	Data	Services	
and	Workflows	using	REST	APIs.	Data	and	models	are	
JSON data documents. Custom backends can be eas-
ily	connected,	just	as	overall	most	aspects	of	the	A12	
client	framework	can	be	customized	or	even	overrid-
den	through	extension	points.

The	server-side	A12	services	provide,	among	others,	
the	 data	 services	 for	 the	 aspects	 of	 data	 storage,	
search,	 and	 model	 repository,	 as	 well	 as	 workflows	
(Camunda/BPMN	 2),	 authentication/login	 (LDAP,	
SAML, OpenID Connect, OAuth 2, JWT), and user/role
management.	 The	 services	 are	 built	 on	 Spring	 Boot	

and	 can	 be	 used	 out-of-the-box,	 but	 also	 easily	 ex-
tended	with	 customer-specific	 code.	Behind	 this	 are	
supporting	open	source	products,	including	Postgres	
as	 database,	 Solr	 for	 the	 search	 index,	 Camunda	 as	
workflow	engine	(optional),	Keycloak	for	access	man-
agement and single sign-on (optional).

A P P

C L I E NT

Engine Engine

Widget Widget

Widget Widget

Widget Widget

Widget Widget

S E R V E R

App

Rest API

J S O N / X M L
Data Document

Persistence Service

Authentication
/ Login

(Qauth2 / JWT)

Workflow
(B P M N2)

34

5. Runtime Platform

Document-Oriented Data
Access and Model Graph

The A12 architecture is based on the concept of hier-
archical	collections	of	field	values	in	JSON	documents	
(Documents for short). Clients can access and store
these Documents. Document models (schemas) spec-
ify	 not	 only	 field	 types,	 but	 also	 validation/integrity	
rules	and	computations	in	our	highly	expressive	kernel	
DSL	(Domain-Specific	Language).	These	rules	are	au-
tomatically	evaluated	by	the	Form	Engine	during	form	
processing,	for	example.	Search	results	are	provided	by	
the	search	service	using	Solr	search	indexes.

� Relationships between Documents are fully sup-
ported; Documents can be linked and relationship
properties and constraints can be modeled and
are	enforced	by	A12	Data	Services.	Furthermore,	
there is an inheritance concept (Subtyping) for
Document	models.	This	allows	more	complex	do-
mains	 to	 be	 expressed	 as	 a	 graph	 of	 Document	
models; we call this the Model Graph. Our tree
engine uses the model graph to represent linked
documents	in	a	tree	view,	for	example.

� Thanks to the mentioned CDMs,	views	on	the	model	
graph	can	be	queried,	analogous	to	GraphQL.

� Batches:	 The	 A12	 Data	 Services	 API	 provides	 a	
Batch REST endpoint for transactional bundling of
multiple document operations, such as creating a
new document with simultaneous linking to anoth-
er document. There is also an operation to partial-
ly	modify	documents	to	reduce	network	traffic.

The A12 architecture places a strong emphasis on
simplifying	client-side	application	development.	It	pro-
vides	 a	 field-proven	 application	 framework	 provided	
by the A12 Client Framework, Engines for working with
models,	and	Widgets	for	reusable	UI	components.

The application framework uses an Application Model
to control the interaction of the Engines, such as in a
Master/Detail	 context.	 Written	 in	 TypeScript,	 the	 A12	
client	framework	is	based	on	React	and	uses	Redux	for	
state management and caching.

The	framework	offers	a	variety	of	integrations: a data
access	 abstraction	 “Data	 Provider”	 with	 built-in	 sup-
port	for	A12	Data	Services,	the	connection	of	process	
engines with built-in support for Camunda/A12 work-
flows	(such	as	task	lists),	an	A12	Data	Distribution	Cli-
ent	(data	sync,	offline	capability),	and	notifications	via	
the	Notification	Center.

In addition, the A12 Client Framework offers many use-
ful	and	powerful	 features	such	as	asynchronous	flow	
control	 using	 Redux	 Saga,	 dirty	 handling	 and	 undo	

mechanisms,	 URL	 routing,	 a	 layout	 provider	 abstrac-
tion	with	 responsive	 defaults	 for	 desktop	 and	mobile	
devices,	and	localization.

An A12 Frontend Client can be modularized accord-
ing to the Microfrontend pattern. For this purpose, we
technically	use	“Module	Federation”	from	Webpack	and	
have	developed	an	application	module	 registry	based	
on it, allowing dynamic integration of these modules,
for	example	according	to	user	roles.

A12 Frontends

35

A12 Backend Services

The	 fundamental	 backend	 service	 is	 A12	 Data	 Ser-
vices.	 It	 provides	 access	 to	models	 and	Documents		
and also handles login with SSO support and optional
Keycloak	 integration	 (LDAP,	 SAML,	 OpenId	 Connect,	
OAuth	 2,	 JWT).	 The	 APIs	 are	 available	 as	 stateless	
REST	endpoints	and	in	Java.	Persistence	of	Data	Doc-
uments is supported by a set of reliable technologies
such as Apache Solr – one of the world’s most popu-
lar search platforms.

A12 Data Services,	 like	all	other	server-side	A12	ser-
vices,	 leverages	 the	 Spring	 Boot	 framework	 and	 is	
available	in	three	forms:	as	a	standalone	application,	
as	a	Spring	Boot	project	 for	project-specific	applica-
tions	 with	 custom	 code,	 or	 as	 a	 library	 to	 leverage	
selective	 features	 in	 existing	 Spring	 applications.	 In	
addition,	 there	are	numerous	extension	points	and	a	
comprehensive	 event	 system	 for	 easy	 integration	 of	
custom code handling before and after operations.

For	 scaling,	 the	 services	 can	 be	 operated	 in	 a	 Ha-
zelcast cluster. Such a cluster can then be dynamical-
ly	adapted	to	the	load	under	Kubernetes.	Our	A12	Proj-
ect	Template	already	offers	configurations	for	this.

Other	server-side	A12	services	include	A12	Workflows	
(based	on	Camunda/BPMN	2)	and	the	A12 User Man-
agement Service	with	 IDP	support	 (Keycloak).	There	
is also A12 Data Distribution, a highly scalable data
distribution	and	sync	solution	with	offline	client	capa-
bility.	The	Notification	Service	uses	A12	Data	Distribu-
tion	for	notification	delivery.

The	A12	Kernel	 is	used	on	the	client	and	server	side.	
It	 validates	 data	 and	 computes	 derived	 data	 based	
on	 rules	and	field	 types	described	 in	data	document	
schemas (called Document Models). Code generation

ensures	native	code	for	both	client	and	server.	On	the	
Frontend,	 the	 rules	and	calculations	are	executed	as	
native	 JavaScript,	 providing	 immediate	 feedback	 to	
the user during form processing.

5. Runtime Platform

Search Engine
(Solr)

Messaging
Database

(Postgres SQL)

Authentification	&	
Authorization

(Keycloak)

Extension points:

• ExecutionSteps

• Custom Batch Operations

• Custom	Persistence	Drivers

Login
Models incl.

Model Graph

A12 Client

Single

Documents
Batch (Query/Mutations)

for Documents and Links

Login

Service

Model

Service

Document

Service

Model

Persistance

(FS)

Document

Persistance
Search

A 1 2 S E R V I C E S

.. .

others

Ap
pl
ic
at
io
n-
sp

ec
ifi
c	
Se

rv
ic
es

Event

Delivery

36

Project Scenario
for the Use of A12

Thanks	 to	 its	modular	 design,	A12	 can	be	 used	 very	
flexibly	and	is	also	ideally	suited	for	Microservice	ar-
chitectures	 and	 Microfrontends	 with	 extensive	 sup-
port in the framework. The following diagram demon-
strates how the building blocks of A12 can interact
with	project-specific	extensions	and	services	as	well	
as	third-party	components	in	a	Microservice	context:

About the Frontend: The resulting web application
is	dynamically	composed	of	several	parts	and	corre-
sponding	frontend	projects:	the	application	shell	and	
two	Microfrontends	provided	by	 the	customer’s	own	
Microservices	(A	and	B).

A12 components are used: the widgets and engines
are	 customized	 and	 the	 A12	 client	 framework	 is	 ex-
tended	 to	meet	 the	 respective	project	 requirements.	
For	example,	one	can	query	data	from	the	REST	APIs	
of	 one’s	 own	microservices	 and	 prepare	 it	 as	 JSON	
documents	 via	 data	 provider	 abstraction,	 making	 it	
accessible to the engines.

The server side consists of

• A12	services	with	optional	project-specific	
customizations and

• any	 project-specific	 services	 (e.g.	 as	 Microser-
vice)	with	or	without	A12-specific	extensions	(e.g.	
the	A12	Kernel	as	library	or	A12	Data	Services	as	
dependency).

5. Runtime Platform

Project-Specific	Services

A12	Services

3rd-Party	Services

MyApp

CLIENT

A12
Data Services

A12
Workflows

Service	A Service	B

Camunda Postgres Solr X Y

SERVER

37

5. Runtime Platform

Components
A12’s runtime platform is modular and
consists of a series of loosely interconnect-
ed components. Depending on the situation,
they	can	be	used	flexibly	in	the	project,	even	
individually.	

Most	projects	use	the	Client-Engine-Widget	
trio.	Some	projects	use	the	back-end	and	
server	services	provided	by	the	Data	Ser-
vices	module.	Others	write	their	own	server	
depending	on	their	requirements.	

E N G I N E S

C L I E N T

W I D G E T S

A12

W O R K F L O W S

DATA S E R V I C E S

K E R N E L

U
A

A

PRO D U CT N A M E A B B R E V I ATIO N D E SC RI P TIO N

Client

Model-driven,	client-side	runtime	component.	Implements	the	UI/UX	concept	of	the	
Plasma	Design	System	and	supports	desktop,	tablet	and	smartphone.	Main	tasks	are	
the	orchestration	of	other	UI	components,	especially	the	A12	engines,	data	retrieval	
and state management.

Engines
Model-driven	UI	components.	Engines	interpret	data	and	UI	models.	
They	are	based	on	the	Plasma	UI/UX	concepts	and	use	the	widgets	for	rendering.

Widgets
Widget	Library,	based	on	Plasma	UI/UX	concepts.	
See also RIGHT-LONG A12 Widget Showcase.

Kernel
Bundles	everything	for	the	creation	and	processing	of	document	models:	
modeling	tools,	language	for	validations	and	calculations,	client-	and	server-side	runtime	
components,	Java	and	Typescript	API.

Data Services
API	for	managing	models	and	data.	It	also	contains	routines	for	client/server	
communication,	validation,	persistence	and	indexing.

User Management, Authentication

and Authorization

Bundles	solutions	around	authentication	(Keycloak,	OAuth	2.0,	SAML,	LDAP),	
authorization (Spring Security, RBAC, ABAC, custom logic) and user management

Workflows
 Integration	of	Business	Process	Model	and	Notation	(BPMN)	in	A12;	

enables	graphical	modeling	of	server-side	workflows	and	their	execution

Data Distribution Transport layer for synchronization of data

Notification	Center Communication	center	for	notifications	such	as	tasks,	appointments	and	reminders

W

E

C

K

DS

WF

UAA

DD

5. Runtime Platform

NC

39

https://a12.mgm-tp.com/showcase/#/

5. Runtime Platform

Widgets	are	reusable	UI	components	that	follow	Plas-
ma	design	conventions	and	UX	concepts.	They	support	
enterprise applications that run on desktops, tablets
and smartphones with keyboard, mouse and touch
input.	 The	 components	 provide	 an	 easy-to-use,	 well	
documented,	strongly	typed	API	and	are	extensible	and	
customisable.

WidgetsW

C L I E N T

S E R V E R

P R O G R A M M I N G
L A N G U A G E

V I E W

S TAT E

Features:

 � Desktop, tablet and smartphone support

 � Keyboard, mouse and touch

 � Accessibility

 � Browser compatibility

 � Programming	API

 � Extendable

 � Seamless integration with A12 engines
	 and	servers

40

A12 engines are implemented in TypeScript. They are
self-contained runtime components that interpret data
and	UI	models.	They	are	based	on	Plasma	UI/UX	con-
cepts and use widgets for rendering.

EnginesE

5. Runtime Platform

P R O G R A M M I N G
L A N G U A G E

V I E W

S TAT E

Features:

 � Data	model	driven

 � Data model editor

 � Field type checking

 � Field	type	conversion

 � Validation and computation

 � Client	and	server-side runtime components

 � Programming	API	(Java	and	TypeScript)

C L I E N T

S E R V E R

41

5. Runtime Platform

The	 model-driven,	 client-side	 runtime	 component	
makes it possible to declare the core aspects of the
application,	 the	modules,	 the	 navigation,	 the	 screens	
and the most important interaction patterns. Its main
task	 is	orchestrating	other	UI	components,	especially	
the A12 engines.
It	also	organises	handling	requests,	data	retrieval	and	
processing, and status management. The client com-
ponent	 implements	 the	Plasma	design	 system	UI/UX	
concept and supports desktops, tablets and smart-
phones.

ClientC

C L I E N T

S E R V E R

P R O G R A M M I N G
L A N G U A G E

V I E W

S TAT E

A S Y N C H R O N O U S
P R O C E S S E S

Features:

� Framework for client applications

�	 Driven	in	part	by	an	application	model	

� State management & dirty handling

� Asynchronous background processes

�	 Navigation	&	routing

� Screen composition & layout

� Desktop, tablet und smartphone support

�	 Notifications	/	Localization	/	Logging

�	 UI/UX	concept	based	on	A12	Plasma

42

C L I E N T

S E R V E R

P R O G R A M M I N G
L A N G U A G E

The kernel component bundles basic functions for cre-
ating	and	processing	data	models.	Above	all,	it	defines	
A12’s	domain-specific	languages	(DSL).	

This	 includes	 all	 bases	 for	 validations	 and	 computa-
tions that are part of business modeling. The compo-
nent	 includes	 client	 and	 server-side	 runtime	 compo-
nents	and	a	Java	and	TypeScript	API.

KernelK

The kernel component includes the A12 DSLs,
among other things

5. Runtime Platform

43

P R O G R A M M I N G
L A N G U A G E

5. Runtime Platform

The	 Data	 Services	 component	 provides	 an	 API	 for	
managing models. It also includes routines for client/
server	 communication,	 authentication,	 authorisation,	
validation,	persistence	and	indexing.	It	is	programmed	
in	TypeScript	for	the	client	side	and	in	Java	for	the	cli-
ent	and	server	side.

Data ServicesD

The services component provides central server-side services

A P P L I C AT I O N S E R V E R

D ATA B A S E

I N D E X

C L I E N T

S E R V E R

Features:
� Access to models and documents

�	 Client/server	communication	

� Validation & computation (based on Kernel)

�	 Persistence

�	 Indexing	&	Search

�	 Import	/	Export

� Logging

�	 API

�	 Configuration

44

A12 uses Keycloak, a tried-and-tested open-source solu-
tion, for authentication. It also supports both OAuth 2.0
with OpenID and SAML token-based SSO authentication
and	connection	to	LDAP.

A12’s	 UAA	 components	 also	 provide	 a	 highly	 flexible	
and	powerful	authorisation	solution,	which	can	provide	
access	rights	in	different	levels	of	granularity.	Both	role-
based	and	more	complex,	attribute-based	rules	can	be	
specified,	thus	protecting	access	down	to	the	field	level	
of data documents.

The	UAA	component	is	supplied	as	a	library.	It	can	there-
fore	be	integrated	both	in	the	A12	server	and	in	the	ap-
plication’s	 standalone	 services.	 The	 access	 rules	 and	
other	 authorisation	 configurations	 are	 sourced	 from	a	
policy repository.

The	UAA	solution	is	based	on	the	well-known	NiST	ABAC	
reference architecture.

User Management,
Authentication
& Authorization (UAA)

The UAA solution is based on NiST ABAC reference architecture

UAA

5. Runtime Platform

Policy Enforcement
Point (PEP)

Policy Decision Point
(PDP)

Subject Object

Policy Information Point
(PIP)

Policy Administration Point
(PAP)

Policy
Repository

Environment
Conditions

Attribute
Repository

Authorization	Services

45

5. Runtime Platform

A12	Workflows	provide	a	lightweight	service	that	inte-
grates	business	process	model	and	notation	 (BPMN)	
modeling functionality into A12. This makes it possible
to	perform	graphic	modeling	of	server-side	workflows	
and	their	execution.

The	A12	workflow	service	can	be	activated	as	an	exten-
sion to other A12 products and integrates seamlessly
into the A12 architecture.

In this manner, documents can be used as inputs and
outputs	 for	A12	workflows,	and	 the	user	 interface	 for	
user	tasks	can	be	created	using	the	existing	A12	mod-
elling approach.

In	 addition	 to	 user	 tasks,	 automatically	 executable	
tasks	 such	 as	 service	 tasks	 or	 script	 executions	 can	
also be modeled, allowing the realisation of partially
and	fully	automated	workflows	using	process	modules.	
Camunda’s	BPMN	Workflow	Engine	is	used	as	a	central	
component	of	A12	workflows.

WorkflowsWF

You	 can	 easily	 extend	 A12-based	 applications	 with	 a	
chat functionality using the A12 chatbot solution. The
A12	chatbot	 is	an	extension	 that	can	be	activated	 to-
gether	with	other	A12	products.	It	includes	a	server	and	
client-side component.

The	chatbot	service	uses	the	open	source	product	Rocket	
Chat	on	the	server.	It	interacts	with	the	frontend	compo-
nent for fully automated chatting as well as forwarding
to an employee. The chat frontend is also optimised for
use	on	both	desktop	PCs	and	mobile	devices.

Chatbot

Chat add-on based on Rocket Chat

iOS / Android

Proxy

Rocket Chat

ServerS
E

R
V

E
R

-
IN

F
R

A
R

S
T

R
U

C
T

U
R

E

Browser
(also mobile)

Hello, how
can I help you?

Hi! I have
a question...

Hello, how
can I help you?

Hi! I have
a question...

Service Frontend
(Browser)

Features:
�	 Model	driven	business	processes

�	 Server	side	/	asynchronous	/	semiautomated

�	 BPMN2

� Camunda process engine

� Camunda model editor

� Integrating with A12 modeled data

46

Fast and secure synchronization of data is one of the
most demanding technical tasks in full-blown business
applications	-	especially	when	not	all	systems	involved	
are permanently online. The Data Distribution compo-
nent	of	A12	is	a	transport	layer	that	specializes	in	exactly	
this.	The	technical	service	is	designed	to	distribute	data	
between	servers	and	clients	and	to	propagate	changes	
- especially in scenarios where clients are temporarily
offline.	The	component’s	origins	 lie	 in	an	e-commerce	
project,	in	which	it	manages	the	data	synchronization	of	
a global store network.

Data Distribution

Not included in A12 Platform license

DD

5. Runtime Platform

47

5. Runtime Platform

In	the	context	of	business	applications,	employees	are	
typically	flooded	with	a	number	of	different	messages.	
There is information about new tasks, messages from
various	 communication	 channels,	 as	well	 as	 appoint-
ments	and	reminders.	With	the	Notification	Center,	all	
these messages in business applications can be bun-
dled	 in	 one	 central	 location.	 It	 serves	as	a collection
point	for	different	types	of	notifications based on dif-
ferent	business	use	cases,	structured	views,	different	
filters	 and	 user	 preferences.	 The	 Notification	 Center	
integrates seamlessly with A12-based applications. It
provides	 several	 predefined	 notification	 types.	 Using	
the	 Notification	 Center’s	 API,	 the	 development	 team	
can	 also	 create	 their	 own	 custom	 notification	 types	
quickly	and	conveniently.

Notification CenterNC

Not included in A12 Platform license

P R O G R A M M I N G
L A N G U A G E

V I E W

S TAT E

A S Y N C H R O N O U S
P R O C E S S E S

B AC K E N D

48

5. Runtime Platform

Project Template
The	A12	Project	Template	provides	a	starting	point	for	
development	teams	to	conveniently	set	up	A12	projects	
and	 quickly	 bring	 A12	 applications	 into	 production.	
Among other things, it contains standardized build
pipelines	as	well	as	development	and	test	environments	
and	covers	basic	security	requirements.	At	its	core,	the	
template	includes	the	A12	components	Data	Services,	
Client	and	UAA.	Keycloak	is	set	as	the	identity	provider,	
and the authentication type is OpenIDConnect/Oauth2
in the default case. Optional components such as work-
flows,	the	Notification	Center	and	the	Print	Engine	can	
be	integrated	in	a	standardized	way	if	required.

Client Server

src
Frontend Code | Appmodel | Application

Setup

ressources
Static Resources | Index.html | Images

init
Initialize Models and Documents for

Cluster Environments

app
Backend Code

common
Models, Document Resources

compose
Docker Compose Configuration

e2e
End-to-end-tests

jenkinsPipelines
Jenkins Pipelines for Continuous Integration

49

Operations
The A12 platform can be run on-premise in the com-
pany’s	 own	 or	 external	 data	 center.	 In	 addition,	mgm	
offers	hosting	in	mgm’s	private	cloud	in	a	data	center	
in Germany. Another option is to run it in the cloud with
any	cloud	provider.

Cluster capability - A12 is Kubernetes-ready

A12 applications are designed for deployment on Ku-
bernetes	 clusters.	 Built	 on	 the	 A12	 project	 template,	
A12	 provides	 a	 standardized	way	 to	 build	 and	 deploy	
applications	to	all	common	development	and	produc-
tion	environments	(DEV,	TEST,	and	PROD	clusters).	Us-
ing	the	following	templates,	the	DevOps	team	can	very	
quickly	set	up	and	customize	the	build	and	deployment	
processes	for	A12	applications	in	a	proven	manner:

• Helm A12 Stack
A collection of charts for Helm - the popular Ku-
bernetes package manager - enables Kubernetes
deployment	out-of-the-box.

• Logging	&	Monitoring
If	the	particular	operating	environment	does	not	
specify	specific	logging	and	monitoring	solutions,	
A12’s standardized logging and monitoring setup
(based	on	Loki	and	Prometheus)	can	be	used.	
The	state	of	the	overall	system	can	be	checked	at	
any	time	via	Grafana	dashboards.

• A12 Build and Deployment Pipelines
Pre-built	Jenkins	pipelines	automate	the	build	
and deployment processes of A12 applications. A
build pipeline creates Docker images of an appli-
cation and publishes them to a Docker registry. A
deployment	pipeline	provisions	an	environment	
on a cluster.

5. Runtime Platform

50

5. Runtime Platform

Separate Git repository for
deployment configurations

In	addition	to	a	repository	for	the	program	code,	every	
A12	project	inherently	contains	a	repository	for	the	
configuration	of	the	environments	to	which	the	software	
is	deployed.	Code	and	configuration	are	thus	cleanly	
separated from each other. In addition, changes to the
configuration	automatically	trigger	certain	Jenkins	jobs.	
For	example,	adjusting	the	configuration	allows	a	specific	
version	to	be	deployed	to	the	TEST	environment.	At	the	
same time, it is always transparent who uploaded which
version	and	when.

Hosting options for
multiple A12 applications

There are a number of options for
hosting multiple A12-based applications:

� Isolation via user rights and
 otherwise “mixed operation”.
 It is possible to run a central A12 platform running
	 multiple	separate	A12	applications.	If,	for	example,		
	 users		have	access	to	several	specialist	applications,		
	 the	data	and	model	view	could	be	controlled	via	rights.
	 Services	used	across	all	applications	can	also	be		
 shared.

� Isolation through separate deployments
 If the A12 applications are to be run in isolation from
	 each	other,	the	A12-specific	services	(database,	Solr,		
 etc.) must be deployed separately for each separate
	 runtime	environment.	

Modularization of deployed artifacts

The frontend part of an A12 application can be de-
ployed	as	an	NPM	package.	The	models	are	deployed	
separately	 in	the	corresponding	servers:	the	workflow	
model is installed (or updated) in Camunda and the
data/form	models	 are	 injected	 into	 the	 A12	 Platform	
server	(via	the	import	API	using	REST	call).

For the communication with surrounding
systems several options are possible:

� Make data from the peripheral system
 available to the client as A12 Documents.

 Option 1: Peripheral system actively pushes data
	 The	data	from	the	peripheral	system	is	actively	made		
	 available	by	the	surrounding	system,	e.g.	via	JMS		
 messaging (transactionally secure) directly to the A12
	 server	(which	is	extended	by	JMS	listeners	for		 	
	 this	purpose).	Or	by	calling	the	data	services	APIs		
 remotely on the side of the surrounding system.
	 For	this	purpose	we	offer	a	JSON-RPC	API	with	CRUD		
 and other operations. These operations can be
 sent in batch, which are then processed in a common
	 transaction.	But	you	can	also	define	your	own	Spring		
	 MVC	REST	endpoint	or	JSON-RPC	“Custom	Operations”	
	 -	this	is	successfully	practiced	in		many	projects.		

 Option 2: A12 Data Server calls repository
 on demand (“replaces database”).
 One can easily implement a custom Spring repository
	 for	a	document	type	that	redirects	CRUD	and	list		
	 operations	to	the	Umsystem.	The	repository	would		
	 then	not	use	JDBC,	but	work	via	messaging	(JMS)		
	 or	REST/SOAP.	Note	here	that	only	JMS	messaging		
	 runs	in	Java	EE	transactions.

� Offer operations of the surrounding system “directly
 If the peripheral system is more likely to offer
 operations, or the data is to be seen directly by the
 client (i.e., not as A12-compliant documents), then one
	 can	provide	a	server-side	service	to	the	client	that		
	 serves	as	a	facade/adapter	between	the	client	and	the		
 surrounding system.
	 As	a	standalone	service,	this	service	can	be		 	
	 provided	via	Spring	Boot	or	based	on	another		 	
 framework or a non-JVM runtime. Authentication and
	 authorization	is	provided	via	A12	UAA.	The	service	can		
 implement the calls internally as desired. REST or
	 better	JSON-RPC	is	recommended	as	endpoints	visible		
 to the client.

� Direct call of the surrounding
 systems from the client
 This	is	technically	possible.	However,	direct	access	to	
	 backend	systems	without	UAA	is	not	recommended		
 due to security concerns and SSO/CORS complications.

51

Appendix A: Technologies
The	separation	of	business	expertise	and	technology	
allows	the	technologies	used	to	be	exchanged	as	
required.	On	the	following	pages	you	will	find	an	over-
view	of	the	current	A12	technology	stack.

06

Technologies currently in use

6. Appendix A: Technologies

W

K

A12 PRO D U CT TEC H N O LOGY D E SC RI P TIO N

Kernel Java

Typescript

Groovy

Antlr Parser	generator

StringTemplates Template engine

JAXB Mapping	Java	objects	to	XML

Jackson JSON	processor	for	Java

Widgets Typescript

React Building	UIs

Styled Components CSS styling

Recharts Chart library

DraftJS Rich	text	editor

React-Dnd Drag and drop handling

React-virtualized Rendering partial data into DOM

Redux State management

UAA Typescript

Redux State management

oidc-client-js OpenIdConnect authentication protocol

Java

Spring Application	framework	for	the	Java	platform

Spring Boot Auto	configuration	for	Spring	application

UAA

53

6. Appendix A: Technologies

Spring-security Spring	security	approach	for	authorization	(SpEL	-	Spring	Expression)

KeyCloak Identity and access management

OAuth2/OpenID Protocol	for	authentication

SAML Protocol	for	authentication

LDAP Protocol	for	accessing	and	maintaining	distributed	directory	information	services	over	an	IP	network

Data Services Java

Apache solr Search	index

WildFly Application	server

Apache Tomcat Application	server

Eclipse Jetty Application	server

PostgreSQL Database

Oracle Database

H2 Local In-Memory-DB

Spring Security Authentication, authorization

Spring Boot Auto	configuration	for	Spring	application

NodeJS Java	runtime	environment

Typescript API

Workflows Kotlin

Spring Application	framework	for	the	Java	platform

Spring Boot Auto	configuration	for	Spring	application

Camunda Platform	for	BPMN	workflow	and	DMN	decision	automation

Typescript Frontend

React Building	UIs

DS

WF

54

Webpack JavaScript	module	bundler

NPM Package	manager	for	JavaScript

Overview Engine Typescript

React Building	UIs

Stylus CSS preprocessor

Recharts Chart library

DraftJS Rich	text	editor

React-Dnd Drag and drop handling

React-virtualized Rendering partial data into DOM

Redux State management

Form Engine TypeScript

JavaScript

TSLint Analysing Typescript

NodeJS Java	runtime	environment

NPM Package	manager	for	JavaScript

Lerna Managing multi-package repositories

Webpack JavaScript	module	bundler

React Building	UIs

Redux State management

Marked Markdown	in	expression	language

Jison Expression	language

moment.js JavaScript	wrapper	for	the	date	object

6. Appendix A: Technologies

O

F

55

Tree Engine Typescript

React Building	UIs

Stylus CSS preprocessor

Recharts Chart library

DraftJS Rich	text	editor

React-Dnd Drag and drop handling

React-virtualized Rendering partial data into DOM

Redux State management

Chat Solution A12 Client Frontend

A12 Widgets Frontend

Rocket.Chat Web chat platform

NodeJS Java	runtime	environment

MongoDB Data persistence

Chatbot Python

Rasa Chatbot	development	framework

Tensor-flow Machine learning/differentiable programming framework

Scikit-learn Machine learning library

Flask Web framework

Client Typescript

JavaScript

TSLint Analysing Typescript

NodeJS Java	runtime	environment

NPM Package	manager	for	JavaScript

6. Appendix A: Technologies

T

C

56

6. Appendix A: Technologies

Lerna Managing multi-package repositories

Webpack JavaScript	module	bundler

React Building	UIs

Redux State management

Inversify Configuration	injection

Simple Model Editor A12 Frontend

Typescript

React Building	UIs

Redux State management

Redux Saga Library	used	to	handle	side	effects	in	Redux

A12 Installer Typescript

React Building	UIs

Redux State management

Redux Saga Library	used	to	handle	side	effects	in	Redux

Spring Boot Auto	configuration	for	spring	application

H2 Database Local in-Memory-DB

Electron Software	framework	to	develop	desktop	GUI	applications using web technologies

Plasma Design Adobe Illustrator Creating graphical user interfaces

Adobe XD Creating	screens	and	lo-fi	prototypes

Azure Creating	hi-fi	prototypes

PUG Template engine – create reusable HTML

BEM Creating	extendable	and	reusable	CSS

Documentation Asciidoc User	documentation

SME

57

Typedoc Generating	API	documentation	for	TypeScript

Javadoc Generating	API	documentation	for	Java

QA,	Testing	&	Security Enzyme Unit	tests

Cypress Integration tests

Testcontainers Integration/system tests based on Docker containers

JUnit 5 Testing	framework	for	Java	applications

MockK For Kotlin

H2 Local in-Memory-DB

QFS-Test-Suite Automated surface tests

PerfLoad Load testing

Selenium Browser automation

Mocha Javascript	test	framework

TestCafe Automating end-to-end web testing

Sonarqube Continuous	inspection	of	code	quality

OWASP
Dependency Check Scanning	for	vulnerabilities

TestRail Managing and tracking testing

JAX-RS Integration tests

jMeter Functional	behavior	and	performance	tests

TestNG Unit,	functional,	end-to-end,	integration	tests

Python Orchestrating security test suite

Docker Running security test suite

Sqlite, MariaDB Persistent	Storage	for	licenses,	credentials,	configuration

OWASP ZAP Dynamic application security testing

6. Appendix A: Technologies

58

Postman/Newman REST	client	for	API	testing

OWASP DefectDojo Security reporting and monitoring

Xanitizer Static application security testing

Chai Assertion library for Node

NYC Test	coverage	reporting

NPM audit Security	review	of	project’s	dependency	tree

Hamcrest Creating customized assertion matchers

Runtime Docker /
Docker-compose Defining	and	running	multi-container	Docker	applications

Kubernetes Managing	containerized	workloads	and	services

Prometheus Systems monitoring and alerting toolkit

Grafana Analytics & monitoring

ELK (Elastic,
Logstash, Kibana) Log management

Ansible Automating	configuration	management	&	application	deployment

Development-
Infrastructure Jenkins Automation of builds and deployment

Artifactory Managing code repositories

GIT Version control

Bitbucket Code	collaboration	&	version	control

Gradle Build automation

Maven Build automation

Webpack JavaScript	module	bundler

NPM Package	manager	for	JavaScript

6. Appendix A: Technologies

59

mgm technology partners GmbH
Taunusstr. 23

80807 Munich
Germany

Tel +49 89 / 35 86 80-0
www.mgm-tp.com
info@mgm-tp.com

