L1 mgm

Low Code for Individual Enterprise Software

2025.06 LTS

Innovation Implemented.




L1 mgm

Legal notice

Authors:

Hamarz Mehmanesh
Sabine Gandenberger
Ansgar Weiss
Thomas Kneist
Sebastian Lorenz
Martin Backschat

mgm technology partners GmbH
Taunusstr. 23

80807 Munich

Germany

Tel: +49 (0)89 / 358 680-0

Jurisdiction and place of performance: Munich

All rights reserved.

Permission required for any reproduction, even excerpts.
© 2025 mgm technology partners GmbH

www.mgm-tp.com




Contents

1.1
1.2
1.3

21
2.2
2.3
2.4
2.3

3.1

32
3.3
34
3.5

Executive Summary

What is A12?
For Which Operational Scenarios Is A12 Designed?
What Benefits Does A12 Provide?

Motivation and Approach

From Micro Apps to Integrated Enterprise Applications
The True Cost of Enterprise Software Development
Model-Driven Development

Digital and Data Sovereignty

Artificial Intelligence as a Catalyst

Plasma Ul/UX Design System

Efficient User Interfaces for Enterprise Software
Methodology for Coherent User Experience
Accessible Web Applications

Reusable Widgets

Well-designed Theming Concept

14
15
16

18

19
19
19
20
20

4.

41
4.2
4.3

4.4
4.5

5.

5.1

52
5.3
5.4
5.5

L1 mgm

Modeling Platform

Modeling: A New Software Development Discipline?
The Modeling Concept of A12

Advantages of “Data First” Modeling with the

A12 Rule Language

Simple Model Editor (SME)

Provision of the Modeling Environment

Runtime Platform

A Different Range of Tasks for Developers
Architecture

Components

Project Template

Operations

Appendix A: Technologies

22

23
23
31

33
36

37

38
40
34
56
57

60



01

Executive Summary

A12 is a platform for developing enterprise applications in complex
IT landscapes. It relies on model-driven software engineering (MDSE)
and brings the low-code principle to the world of enterprise software.

This white paper presents the A12 approach and demonstrates how
it can be used to turn applications into fully integrated enterprise
applications that will work for a long time to come.

L1 mgm



1. Executive Summary

Structure of the A12 Platform

&5

A12 Modeling Platform

Tools to design domain contexts and parts of the

user interface (Low Code)

a A12 [u} A12 [} A12
DM RM MM
e | P
=) A12 o A12 o A12
Model types oM ™
‘‘‘‘‘‘‘ s oos
[ul A12 Q A12
PM AM
. . [ul A2
Validation & RL
Calculation
Editor

ssov BPMN
Business Process Model and Notation

Decision Model & Notation™

]

A12 Plasma

Design System, Widget Library & Theming, specifi-
cally tailored to Enterprise Applications

HTML

(Web Content

WCAG Accessibility

~ Guidelines)
£ 2

<>

styled
components

A12 Runtime Platform

Client- and server-side technical components for
robust and scalable applications

nnnnnnn

o

Engines _— Widgets
Model-riven Ul Reusable Ul
() Components
(e==.)
—
— UAA —
identity & Access
Management @
Data Services — Kernel
o Domain Specific
go Language (0SL)

Workflows
Process Automation

e A

Data Distribution —— cMs
ation

Content Management

Notification
Center
Centralized N

Manage

Synch

TypeScript

«

=’ Java &) spring

—_—

KKotlin T

React @3 Redux

CLOAK

L mgm

iy

Containerization

DevOps tooling for CI/CD and flexible on-premise
and cloud operations

,— Kubemetes Cluster

P Q Cluster Infrastructure Q 12 Application Services ———————————————————————

A12 Infrastructure A12 Services Project Services
]

O & D0
& ¢

docker Jenkins ﬁGradle



1. Executive Summary

For Which Use Case Scenarios Is A12 Designed?

Development of complex
custom software

A12is theideal foundation for highly scalable, secure, robust,
and potentially business-critical web applications—whether
eGovernment application systems, portals, and specialized
procedures for the public sector, underwriting platforms
for industrial insurance, law firm management systems, or
e-commerce applications.

Core-level platform for an
integrated IT landscape

Medium-sized and large companies as well as public author-
ities can benefit greatly from consolidating and moderniz-
ing their IT landscape on the basis of a uniform platform.
Thanks to its modular structure, robust basic components,
and focus on flexible system integration, A12 is ideally suited
for this purpose.

Replacement of Excel/Access
applications

Despite all the disadvantages, many business processes are
based on Excel and Access solutions. With A12, they can be
consolidated and transferred to an open platform as real ap-
plications (including automated migration tools). This sim-
plifies management and further development and ensures
compliance with regulations.

Software product development

A12 provides a proven foundation for developing long-last-
ing software products. Using A12 shortens time to market
and simplifies the development of a high-quality application
that is not only state-of-the-art for a brief moment, but re-
mains so thanks to the continuous development of the plat-
form infrastructure.

L1 mgm



1. Executive Summary

What Benefits Does A12 Provide?

N H[ P

w D

Handling your business content yourself
Business experts and analysts can use the modeling tools themselves to create the soft-
ware's domain-specific core and maintain it in the long term.

+ Adjust business aspects without programming knowledge
« Implement business changes rapidly

+ Automate the software development process extensively

« Powerful Rule Language for validations and computations

An open platform, not a closed ecosystem
A12 is designed as an open system. It provides an enormous amount of flexibility for soft-
ware development, long-term maintenance and further development.

+ Flexible use of modular runtime components

+ Systematic use of open source technology

+ APIs for individual extensions at any level

« Full operational control — on-premises or (private) cloud-based
+ Controllable and responsible use of Al

Future-proof platform for long-lasting software

The consistent separation of business-specific models and technology makes it possible to

retain the business-specific core even in the case of technological leaps.

« Detached innovation of technology through model-based approach
+ “Data First” principle for sustainable domain-oriented modeling

« Careful technology selection and use of industry standards

+ Continuous development of the technical basis

L mgm



L1 mgm

173

Motivation and Approach

mgm'’s goal is to faster and more economically build enterprise
software that is robust, secure and durable. Our experienced soft-
ware engineers back up this claim. They work at gradually reduc-
ing the typical expenditure involved in developing enterprise ap-
plications. This is first and foremost done by using model-driven
abstractions and separating business expertise and technology.



2. Motivation and Approach

L1 mgm

From Micro Apps to Integrated Enterprise Applications

Many enterprise applications generally originate as prag-
matic makeshift solutions in separate business depart-
ments. More often than not, they start off as small Excel
tables. They get bigger and bigger, incorporate macros
and end up becoming almost like applications themselves!
This pragmatic approach (“shadow IT”) has its downsides,
namely major data protection and IT security risks.

Low code platforms aim to eliminate the potential breach-
es caused by makeshift solutions with applications. They
give business departments the opportunity to build their

own real applications, taking into account company-specif-
ic IT guidelines. This step is perfect for those makeshift
solutions that have particular potential. Another challenge
arises for another subset of micro apps, of course, usually
for the ones that are most critical to business: they must
be integrated into a heterogeneous IT landscape. Most low
code platforms come with turnkey solutions for the most
common integration scenarios. But they do have their lim-
its. Custom development and professional system integra-
tion are unavoidable.

A12 not only helps you with the transition to micro applica-
tions, but also with moving towards integrated enterprise
applications. In the long term, this is where companies
spend the most money: in the development, maintenance
and operation of enterprise applications.

The True Cost of Enterprise Software Development

mgm has been developing custom enterprise software for
over 25 years. The core concept behind A12 is based on a
series of observations that we made over and over on a wide
variety of projects. Most importantly, the usual cost drivers
(business adjustments and integrations) that occur once a
project has been started are constantly underestimated and
can end up being the reason why IT projects fail over the long
term, even very large ones.

Enterprise domains - anything but standard

Every enterprise software program models a certain aspect
of a company’s reality. The particular model is based on the
enterprise domain. The enterprise domain comprises a set
of (enterprise) entities. These might be things like clients,
products or orders. Each of these entities is represented by
an entity model in the software. This model defines the en-
tity’s structure, attributes and relationships with other enti-
ties.Entity models are subject to constant change, which is
often a major cost driver in enterprise software development.

The following points are primarily
responsible for change:

@ Agrowing business is a complex network. All the
company knowledge is spread out in different people’s
brains. There are many factors that influence the
business that individual company representatives deal
with over and over again.

@® The company continues growing. The portfolio changes.
New distribution channels are added; others are eliminated.
Different branches have to adhere to new regulatory
requirements.

@® Each company organises their business in their
own way depending on a variety of different rules.
What's more, they all use their own terminology, which
is constantly growing and changing.



10

2. Motivation and Approach

And so, the models on which different
enterprise software programs are based
do not follow the same standards.

On the contrary, they are highly individ-
ualised, always have exceptions and

sometimes even inconsistencies.

Models are yet another cost driver. Models gradually

get more complex. They map aspects of reality that are
constantly growing and that are relevant to the respective
enterprise domain’s success.

The figure illustrates just how complex they can get, for
example when mapping a tax form.

L mgm




Enterprise IT and Shadow IT

Classic Enterprise IT in companies is structured centrally. The standard software and all cus-
tom-developed software used must comply with certain standards. But people are finding more
and more solutions outside enterprise IT for department-specific requirements. They are cre-
ated as Excel-based solutions or basic micro apps, for example. This often happens without
telling the IT department. And thus shadow IT is created.

ETEN

Business Business experts
department low
N code editor M
Business
department low (i crres s
code editor =
Enterprise IT _ SN A 48 @App is
COMPLIANCE ready
STANDARDS
IT experts
Operations

Business
department low

code editor @

Dynamic weighting of low code and custom development

Custom Enterprise Projects require project-specific and customised methods. There can be a lot
of variation in the weighting of low code and custom development from project to project. But the
weighting can also vary considerably throughout the different life cycle phases of an IT project.

STANDARD SOFTWARE ‘ INDIVIDUAL SOFTWARE

Enterprise business
department

I
.

Excel App

Enterprise IT

COMPLIANCE

STANDARDS
O SECURITY
Cloud °
soiution

Business

A department low code
editor

Excel App

Enterprise low code development

Excel App

Micro app
low code
cloud solution

Shadow IT

If departments can design their own applications with the right low code tools and the IT

department can secure the technology and standards centrally at the same time, enter-

prise applications with true value can be created. The low code part can be individually

weighted depending on the project. The goal is to get the department and IT experts work-

ing together effectively.

Business
department low code
editor

Business
department low cod
editor

Enterprise IT

COMPLIANCE
STANDARDS
SECURITY

Business
department low code
editor

H:-E-H-D



12

2. Motivation and Approach

Different Representations
of Enterprise Entities

Any change in an enterprise entity leads to more expendi-
ture from a software development point of view. Why? Be-
cause they have to be represented differently in different
technical contexts. And you need mappings between these
different representations. In practice, one tiny business
change can create a domino effect of adjustments that
need to be made to the software.

The figure to the right gives an overview of the various rep-
resentations and mappings that are generally found in en-
terprise software.

The business model is the starting point. It is a model for
implementation - the first representation of the modelled
enterprise entities and their relationships to each other.
The following representations occur in a

three-tier architecture:

—> The enterprise objects are stored in a database in the
data tier. Therefore, the representation needs to meet
the requirements of this persistence level (1). The data
is presented in tabular form in a relational database.
Object-relational mapping is required so that the table
data can be processed in an object-oriented high-level
language like Java (2).

Interface

=]

90

Business

model

PO e

66 Persistence
66 SCHEME V1

- The application logic is stored in the business tier.

It has its own representation (3), which results from
the respective processing of the enterprise objects,
components and workflows.

The presentation tier requires yet another
representation (4). This deals with how the enterprise
entities are presented in the user interface and how you
can interact with them.

Enterprise object

OR mapping

L mgm

\n) Functional
@@  building blocks

Output

[=]
A

@ Integration

66 Migration
g
66 SCHEME V2

In addition, further representations and mappings of the
enterprise entities are necessary in the following contexts:

- Providing services for specific functionalities — for
example, checking stock (5).

- Generating Word or PDF documents such as insurance
policies and administrative notices (6).

- Integrating the application into other systems in the
company'’s IT infrastructure (7).

—> Extensive migrations, that become necessary due
to further developments of the schema of the underlying
database (8).



13

2. Motivation and Approach

@

Each of these representations comes with its own set of challenges and costs.

Some of them only become apparent after a while.

For example, the figure shows the fact that enterprise applications do not usual-

ly stand alone. And when they do, it's usually not for long.

On the contrary, they are usually integrated into complex IT landscapes and only
realise their full potential when they are linked to a range of internal and external

applications.

Heterogeneous IT Landscapes

The IT landscape of medium-sized to large companies
across all industries all have one thing in common. They
comprise large applications such as SAP or larger custom
applications with a variety of smaller ones. In a perfect
world, all applications would be fully integrated with regard
to their involvement in processing business transactions
and data exchange. But, because the technologies used in
applications are so different (SAP, Java applications, cloud-
based applications, etc.), these IT landscapes are usually
built on a technological basis that remains heterogeneous.
More specifically, this means that:

-

Individual applications in this landscape usually
have their own project team, release cycles and
technology bases.

Different technology and architecture decisions

are made for custom applications depending on the
application’s age and the project team’s preferences
and decisions. This also applies to integrated
applications that are based on applications such as
SAP or MS Dynamics.

Different applications usually also have different
contact persons on the business side of things.
These people draft the business specifications for the
application’s initial and subsequent development.

L mgm

The heterogeneity of the IT landscape is another cost driver
that even today’s low code approaches cannot completely
resolve. Custom development work can be reduced, but not
completely done away with. Even if enterprise applications
start off small, integration issues usually arise sooner rather
than later as applications can only reach their full potential if
they are integrated.



14

2. Motivation and Approach

Model-Driven
Development

The many different representations of enterprise entities in
the various software tiers are major cost drivers in enterprise
software development. How can the cost of mapping these
representations be reduced? Model-driven software devel-
opment provides an answer to this question. The idea behind
it is modelling enterprise entities and their relationships to
each other. These models can be defined and adjusted using
specialist editing tools.

Special interpreters and code generators translate the mod-
els into the application.

The kicker is that the elaborate mapping of different repre-
sentations no longer needs to be done by hand. The genera-
tors and interpreters do it. This means that business content,
which is subject to constant changes in enterprise software,
as previously mentioned, can be displayed in the software
much more quickly and with less overhead.

Advantages of Model-Based
Development

©@ On-schedule implementation
Model-based development makes it possible for IT systems to be
implemented and delivered on time, even when business
requirements change frequently.

© Simplified dependency management

Model-based overall architecture simplifies managing dependencies.

This makes it possible to separate business expertise and technical
framework into separate release cycles. Furthermore, business
expertise can be broken down into specific models for each version
and data type. Each of these models is explicitly versioned, but is not
dependent on version and data type. Business changes can also go
live independently of each other for each data type and version.

©@ Less testing overhead
Testing can be extremely costly for custom-developed software that
is constantly being changed. Each version, data type and change
must be tested separately for each product. However, model-based
development reduces the need for business testing, which is limited
to the models.

©@ Clear path for technical innovation
As business expertise and technology are separate, technical
innovations can be made without having to consider all of the
application’s technical content. For example, you can
roll out new technology in the user interface design and
implementation, in persistence or in server processing.

L1 mgm



15

2. Motivation and Approach

Digital and Data Sovereignty

As along term partner of public administrations, we support
our customers in their desire for a self-sufficient approach to
software. Business departments can do this with A12; they
can keep full control, even when the applications are highly
complex and integrated.

Control over business expertise -
technology interchangeability

The strict division between business expertise and technolo-
gy provides great flexibility for further software development
over the long term. The business models make up the soft-
ware’s core; they can also be adjusted and developed with-
out the help of a software developer. They are available as
simple, open format JSON files.

This separation of the business content makes it much eas-
ier to change the technology. This would not be the case if
the business aspects were closely interwoven into the code.
One particular advantage is that the code does not need to
be completely rewritten with each technical innovation. It is
much easier to keep the technology up to date.

Control over data

For business-critical software, it is essential that sensitive
data is stored in a trustworthy, secure environment and that
smooth operation is guaranteed. We know just how import-
ant it is to have control over your business; we see this over
and over again with our customers in the e-commerce sec-
tor. During periods of higher demand, like around Christmas,
the systems run at maximum load for a long time without any
downtime. Which is why, on the one hand, software must be
scalable and high performance, while on the other, sole con-
trol over the underlying infrastructure and the release stages
involved is also necessary.

L1 mgm

We offer the following options
for A12 installation:

©@ On-premises operation in the
company'’s own data centre

© Operation on mgm's private cloud,
hosted in a German data centre

© Cloud operation with any cloud provider



2. Motivation and Approach

Artificial Intelligence as a Catalyst

Al-based development approaches such as Vibe Coding are
revolutionizing the software development process. However,
due to the existing weaknesses of LLMs, such as hallucina-
tions, they are (still) risky and can only be used in an enter-
prise context under strict conditions. Based on A12, howev-
er, many Al capabilities can already be tapped for enterprise
development today.

In addition to robust components and clearly structured A12
models, mgm has developed a comprehensive quality assur-
ance landscape for A12 as well as tools for security testing
and build & deployment. This provides a controllable frame-
work in which generative Al and agent-based systems can
be used very effectively and responsibly.

Use of Al at the model level

A12’s model-based development approach, combined with
Al, offers a number of key advantages over conventional de-
velopment paradigms. For example, Al can be used to gen-
erate models automatically. This reduces manual effort and
speeds up the implementation of business requirements.
For A12 Document Models, which are at the heart of data
modeling, this capability has already been implemented as a
prototype. In the Simple Model Editor, modelers can specify
a source document and a prompt, which are used to auto-
matically create an initial model that can be refined manually
if necessary.

L mgm

The particular advantage of using Al at the model level is
that the regular processing chain of models in the form of
interpreters and generators continues to be used. The re-
sulting code remains deterministic. In addition, a range of
existing test and quality assurance procedures can also be
applied to generated models - e.g., the consistency check
for validation and computation rules integrated in the Simple
Model Editor (SME).

Quality Assurance

Lo

Code

verified and
deterministic

[
- ' ©)
e ) / | M
o) I
M Modeler I Modeler
A12SME | , |
Simple Model Editor ! adcj)E;It?::;ts
|:| Prompt Input i
AN
Form/PDF ~ — L - - J
. _J N




17

2. Motivation and Approach

Use of Al at the code level

The use of Al atthe code level also offers advantages for A12
projects. The components of the runtime platform provide
stable and continuously tested solutions for many typical
challenges faced by business applications — from authenti-
cation and authorization to accessible widgets. Using these
components reduces the risk of security vulnerabilities and
increases the productivity of Al bots. Extensive documen-
tation of the components and specifications such as devel-
opment guidelines and security guidelines help to ensure
compliance with best practices.

Nevertheless, additional security measures are essential
when using Al at the code level in A12 projects. These in-
clude, above all, code reviews. In general, no line of Al-gen-
erated code should be included in the project without hu-
man review. However, the test and security tools specially
designed for A12 provide an additional safety net and help
minimize the risks of Al in software development.

L mgm

Measuring and controlling
LLM results

In Al use cases, the question always arises as to which mod-
el offers the best results and how good the LLM results are.
mgm has developed a series of procedures and schemes
to continuously measure and evaluate the results of LLMs.
These are an important building block in A12 projects for
implementing Al-driven functionalities with clearly defined
quality gates.

B Simple Model Editor = o X
1 simple Model Editor N e -
| Workspace Explorer e B e X
" VACIDATE B = | sernQ Add Document Model
& v m basic :
Folder*
Q > [ models : basic/models ™
> W user H Name*
Fuehrerscheinverlustanzeige DM
Locales*
de,en
Roles
Role*
ADD
Artificial Intelligence
use Al to create Document Model
Prompt
Help me create a form for announcing the loss of a driving license based on the provided pdf.
PDF with Form
H 2
CANCEL m
— — — —



L1 mgm

Plasma Ul/UX Design System

Enterprise applications are characterised by high information
density and great complexity. Design languages such as Material
Design hit their limits quickly. They cannot fully respond to some
challenges, such as how to present complex tables, clearly. Or
how to develop the user interface structure consistently when
new information is added. This is why mgm developed A12’s
Plasma design system.



19

3. Plasma UI/UX design system

Efficient User
Interfaces for
Enterprise Software

Plasma comprises a variety of UlI/UX components, usage
patterns and design guidelines that can be used to design
consistent, efficient and attractive user interfaces. And thus
Plasma provides solutions for two of the main Ul require-
ments in enterprise applications: scalability and complexity.

One of the main ideas behind Plasma is to reduce the rep-
resented information density as much as possible. Ideally,
users are only presented with what they really need for the
tasks at hand. They can work faster and more efficiently.

Methodology for
Coherent User
Experience

Plasma also has a variety of reusable models and compo-
nents for requirements that appear repeatedly in enterprise
application user interfaces - from log-in screens to vali-
dating user input. This includes models for the application
framework, navigation elements and notifications, as well as
concepts for handling enterprise objects and the standard
workflows in which they are integrated.

L1 mgm

Accessible Web
Applications

The importance of accessibility in web applications is in-
creasing. For several years now, public authorities within the
EU have been obliged to make websites and mobile appli-
cations accessible. From 2025, according to the European
Accessibility Act, with a few exceptions all websites and
web applications must be accessible. With Plasma, the A12
platform is explicitly designed for building accessible web
applications. Numerous Ul components - including the mod-
el-driven engines for forms and overviews - are accessible
out-of-the-box. However, in the project practice of individual
software development, there are always additional aspects
to consider. There are specific requirements that a Low Code
platform per se cannot cover. For this purpose, the A12 team
offers projects practical assistance in the form of a regularly
updated guide. It contains, for example, background infor-
mation on accessibility certification, design specifications,
and requirements for modeling and development.



20

3. Plasma UI/UX design system

Reusable Widgets

Widgets are reusable components that follow Plasma de-
sign conventions and UX concepts. They support business
applications running on desktops, tablets, and smartphones
with keyboard, mouse, and touch input. The components of-
fer an easy-to-use, well-documented, strongly typed APl and
are extensible and customizable.

Features:

Enterprise Ul for web applications

Support for desktop, tablet, and smartphone

Keyboard, mouse, and touch

Accessibility

Compatible with all major browsers

Strongly typed programming API in TypeScript

Design extensibility: From the application level down to
every single detail per component

® PPOHO®®O®

Seamless integration with A12 engines and services

L mgm

Well-designed
Theming Concept

Plasma relies on an easily extensible theming concept that defaultTheme — classic

allows the look and feel of an application to be customized in

no time. Thanks to the technical implementation with Styled flatTheme — modern

Components and React, there is no need to load CSS files.

A theme can be activated ad hoc by setting a JS variable. conpackliemey - compact

Plasma includes four themes out of the box, each supporting flatCompactTheme — modern & compact

a dark and light mode:
Themes not only encapsulate style guidelines, they can also
be combined with each other. The existing basic themes are
the ideal starting point for covering project-specific require-

ments.

Create theme:
Use of createTheme() with individual configurations

defaultTheme

import { createTheme } from "@com.mgmtp.al2.wi

const theme = createTheme({
Theme Switching - f

flat-compact"

flatCompactTheme

i Time Expand and customize:

Typography: font , fontSize , fontweight

Spacing: spacing , horizontalSpacing , verticalSpacing

DR®BRmi

components: {

button: { primary: { background: "orange" } }

Example: Component styling: change buttons specifically, for example



21

3. Plasma UI/UX design system

Search N —— Filter Multiselect Inline Operations General Actions
. Options
Partner Ubersicht
Active Filter
£ =@ Koo v | Emy v b H Column-Grouping

Inline Actions
Feedspan

Tony Poat s 07:00
Department
Multiline Header
- Rhybox ,
Bank Castelow st 10:00
Connected KPI Header Npath
Danyelle Bielby i i 08:00

Multiselect Projekt

Ordering
Pinned Columns

—Merged Columns

NSRS

Edit Row Information Bibby Attard e e 0700 1800 7753741482 Expandable Row
Taschat 0800  20:00 811-860-6641
Grouping Sales 9 - iee Mixed Column
« < BB 5 i with Prop.
Sorting
Switch Columns Cont. Editable Row Edit Layout ——— Paging

O Button Widaet Widaets Shor. X

A1 2 Widget Showcase 0/mgm AL WidgetsShowease

Genera -

https://a12.mgm-tp.com/showcase/#/ e -

SR

The A12 Widgets showcase provides examples of all Plasma components.

L mgm

Unlike pure design languages like Material Design, Plasma also includes an
extended range of functions which enterprise applications usually require. The
figure provides an example of the overall concept for tables and all common
features. We have already implemented some of these features in Plasma; oth-
ers are still in progress.

mam tp.com

Buttons car



L1 mgm

Modeling Platform

The A12 modeling platform provides several modeling tools and
a rule language that can be used to map high levels of business
complexity for enterprise applications. The following sections
provide a brief introduction to the modeling philosophy of A12
and introduce the main models and tools.



23

4. Modeling Platform

Modeling:

A New Software
Development
Discipline?

Thefirst step in the traditional development process involves
business analysts and the business department working to-
gether to draft the requirements for the software to be devel-
oped. Then, they describe the requirements in prose and give
them to the development team. We still use this traditional
requirements analysis form for projects that are based on
A12 - albeit to a lesser extent. But there is also another role:
business analysts and experts can use modeling tools to de-
sign and adjust large parts of the application independently.
They get much more creative leeway and become Co-Devel-
opers/Citizen Developers. The adjacent figure illustrates the
differences between the two approaches.

In most projects, mgm provides business analysts as part of
the development team. This is beneficial as they are already
familiar with the modeling tools and techniques. Custom-
er-side business experts are usually involved from the be-
ginning of the project. After an introduction to the modeling
tools, they are then in a position to adjust essential parts of
the application on their own.

The Modeling
Concept of A12

The modeling approach of A12 differs in one essential point
from the modeling approaches of other low code platforms:
A12 follows the “data first” modeling paradigm.

Instead of starting with clicking together a user interface, A12
modeling starts with the definition of business relationships.

The decisive advantage of this approach is the clear sepa-
ration of the domain description from a specific application.
This creates synergies through the cross-application and
cross-context use of domain expertise and great flexibility
for the further development and maintenance of long-lived
enterprise software.

L1 mgm

Classic A12
development development
process process
Business Business
Analyst Analyst

T Empowered
L-| Role in value
chain process

A

Business
Analyst
Business
Editor
Application Application
1] 1] 1]
an an an
no @ no @ no @
Business
Engine
Java Engine Java Engine

(VM) (JVM)

The classic role allocation is shown on the left. Role allocation in
the model-based approach is shown on the right. The business
analyst helps the developer by independently designing parts of
the application.




24

4. Modeling Platform

Main Modeling Dimensions

F

s [ 88
il

App modeling

+ Application framework

Workflow modeling

+ Business processes based on BPMN 2.0
(Business Process Model and Notation)

Ul modeling

+ Form models = Forms

+ Overview models = Tables

« Tree models — Hierarchies

+ Content models — Page content

Data modeling

+ Document model
+ Relationship model
+ Mapping model

+ Rule language

L mgm




25

4. Modeling Platform

Modeling Business Expertise
and Application Logic

Defining the enterprise entities and their relationships to
each other in data models is an essential modeling task.
Business analysts and experts can use a modeling tool to
create and adjust the data structures of mapped entities,
such as contracts or products.

They can also use an integrated kernel language to define
validation rules and computations, i.e. to map the applica-
tion logic. Relationship models can be used to describe links
between data models.

Modeling business-specific aspects keeps business exper-
tise and technology separate from each other. Business con-
tent can be modified without any technical adjustments being
needed. The technology can be developed further without all
the business content having to be adjusted. We are confident
that this separation of business expertise and technology will
shape the future of enterprise software development. It accel-
erates development, prevents costly reimplementation and
makes it possible to adapt to changes rapidly.

The rule language for validations and cal-
culations is implemented in the technical
A12 component Kernel

— see also p. 50.

A12

@@}

Engines
Model-Driven Ul

Data Services
Backend / Server

A—
'
~

Data Distribution

Synchronization
of Mobile Data

Client

Frontend
Application

UAA

Identity & Access
Management

Workflows
Process Automation

H

Notification
Center

Centralized Notification

Management

Widgets
Reusable Ul
Components

Kernel

Domain Specific
Language (DSL)

5]

CcMs

Content Management

L mgm

Relationship between
modeling aspects and
technical A12 products

o0——> Form- / Overview-

/ Tree- / Content model

o—— > App model

O0—— > Rule language

1 The term “document mod-
el” indicates that technical
handling is document-ori-
ented. In terms of content,
document models describe
any «entities» that can also
be understood as part of a
technical knowledge base.



26

4. Modeling Platform

Modeling Data Transformations and Mappings

Data transformation and mapping are essential wherever
data from different sources is brought together — whether
integrating a business application with a neighboring sys-
tem or in large-scale data consolidation initiatives such as
register modernization in Germany. Until now, the implemen-
tation of these operations were considered technical tasks
and needed to be programmed by a development team. With
the transformation and mapping features in A12, however,
these operations can be modeled by subject matter experts.
They usually have a much better knowledge of the source
data, the intended data and the user interactions. With the
editors present in the A12 integrated modeling environment,

A12 Document

XML File

1F| Transformer Model

. Create A12 Document Model for XML Schema
. Parse XML file into A12 Document

the Simple Model Editor (SME), modelers can express the
business requirements directly in the models. The A12 Map-
ping Model allows to select the target and different A12 Doc-
ument Models as sources. Necessary data consolidations
can be expressed as Computations in the powerful Kernel
Language using the whole data context of the joined sourc-
es and the target documents. In the next step, the data is
transferred to the target document. Because those steps are
expressed in separate models, they can be plugged together
in different ways. This gives optimal flexibility to adjust to
ever-changing source and target data schemes.

I
I
Consolidated
A12 Document

m Precomputation Model

. Use the Kernel Language to express Computations in
the joint data context

L mgm

To complete the data pipeline, A12 also offers the A12 Trans-
former that converts XML data to A12 documents and vice
versa. It allows to seamlessly integrate to external APIs in
both directions. The Transformer Model can currently be in-
tegrated via a command line tool into the CI/CD-pipeline; but
integration into the SME is also planned for the near future.

Final Document

@ Structural Mapping

. Add data to the existing target document

\

@ Mapping Model



27

4. Modeling Platform

Modeling of User Interfaces

Based on the data models, business analysts are able to
create specific parts of the user interfaces using A12's
modeling tools.

The modeling of the user interfaces is currently limited to
the areas in which model-driven components are used. A
number of special Ul models are available for this purpose:

Q Q
oM ™

Form Overview Tree

models

define the structure and
content of online forms.

for presenting tabular data.

The modeling does not follow a what-you-see-is-what-you-
get principle. Instead, the models describe the underlying
structures of the user interface. This has the advantage that
the models are again independent of the technical imple-
mentation. The plasma design system is used for the actual
representation. It ensures a coherent representation and a
coherent user experience.

models

provide many possibilities

models

are used to display and
edit data structures
hierarchically.

Ul models usually refer to A12 data models. They establish
connections between the fields of data models and Ul ele-
ments. Let’s take an input field as an example: A Ul model
describes its position in a form, its label, and possibly addi-
tional user instructions in a text field. A data model specifies
the underlying data type and validation rules.

L mgm

Content
models

are designed to create
static content pages

For each Ul model, A12 provides a
corresponding engine - the Form
Engine, the Overview Engine, the
Tree Engine and the Content Engine.
They bring the models to life in an
application.

— Read more on p. 48.



28

4. Modeling Platform

Modeling Workflows

For modeling business processes, A12 relies on BPMN 2.0
(Business Process Model and Notation), an existing, estab-
lished standard. The modeled business processes fit seam-
lessly into the modeling concept of A12. Document models
describe the data used by a process. With the help of form
models, the respective user tasks can be implemented in detail.

Modeling the Structure
of an Application

The framework of an application can be defined with an App
Model. It acts as a kind of container for all other models.

The app model offers configurations for
certain functionalities of the technical

component Client (see p. 49).

L mgm

'
=/

©-60-0

7 %

el B (Y

Modeling Print Templates

In the context of business applications, the challenge of gen-
erating PDF documents arises again and again - whether it
is a contract in the insurance environment, a proof of invoice
in an online marketplace or the notification of a government
service. With A12's Print Model Editor which is seamlessly
integrated in the SME, print models can be created and ed-
ited and easily brought into A12 applications.” The resulting

PDFs are compliant with the PDF/A-3 and PDF/UA standards
and therefore accessible. The editor enables the convenient
design of segments and sections by adding and placing indi-
vidual elements such as text and images using drag & drop.
Fields, calculations and tables can also be inserted directly,
which refer to selected A12 document models and are filled
with the corresponding stored data.



29

4. Modeling Platform

More Complex Modeling:
Composed Document Models

With Composed Document Models (CDMs) it is possible to use
several document models in one engine - provided that there
is a relationship between the models (defined in a Relationship
Model). Thanks to CDMs, a form can be fed with data defined
in completely different models. The modeling concept of A12
gains significantly in flexibility and expressiveness through
CDMs.

The SME offers a dedicated editing area for creating CDMs.
CDM-based forms, into which fields from different document
models can be inserted, can also be modeled directly in SME. In
addition to cross-model validation and calculation rules, CDM
support also extends to workflows. For example, composed
data can be referenced in process models, and fields in task
lists can originate from different document models.

OA12
DM

DOCUMENT
MODEL

Document

Model 1

[n]
[n}
[n]
[m] [n}
ENGINE 1 ENGINE 2
0OA12 0OA12
DM DM
OA12 . OA12 e
DM DM Document
Document
DOCUMENT DOCUMENT Model 5
MODEL Model 3 MODEL
Document Document
Model 2 Model 4

L mgm



4. Modeling Platform

The Model Types of A12

L mgm

CATEGORY NAME DESCRIPTION
A12 document models contain field definitions and associated validation rules in a hierarchy of
Data Model Document Model groups. Validation rules range from simple constraints - e.g., the definition of mandatory fields -

Data Processing

Ul Model

Workflow

Output Model

Relationship Model

Mapping Model

Form Model

Overview Model

Tree Model

Content Model

BPMN 2.0

Print Model

to complex patterns and conditions across multiple fields.

Relationship models describe links between documents.
They model the relationship properties and constraints.

The Mapping Model allows you to convert an input data structure into a target format—from simple field mapping
and filter operations to complex calculations.

Form models define the structures and contents of online forms. A12 forms consist of common
Ul elements such as input fields, buttons, labels, checkboxes, etc. The modeling tools provide
powerful ways to organize these elements.

Overview models offer various possibilities for tabular presentation of data.

Tree models allow data structures to be displayed and edited hierarchically.

Content models are designed to create static content pages - from the start and information page to the imprint.

A12 supports modeling of business processes in the BPMN (Business Process Model and Notation)
standard. BPMN models interact seamlessly with A12 models.

An app model defines the framework of the application and acts as a kind of container for all
other models.

The Print Model functions as a template for PDF-representations of inserted A12 Documents.



31

4. Modeling Platform

Advantages of “Data First”
Modeling With the A12 Rule Language

Business experts and analysts can create and modify do-
main-specific models for enterprise applications using
A12’s data modeling tools. No programming knowledge nec-
essary! Data models encapsulate the central aspects of the
enterprise logic. They describe the entities with which enter-
prise applications operate, such as contracts and products
with all their properties.

The use of data models
has several advantages:

® Reduced development costs and customisable
applications

® Business experts can modify the applications
on their own. Developers are not needed to
rework the implementation every single
time there is a change in the enterprise domain.

@ The explicit direct storage in models makes
it possible to search for and research business
expertise. This also provides, for example,
explicit traceability of business changes.

® Improved reusability and independence
from technologies

An important part of data modeling in A12 is the rule lan-
guage for validations and computations. Based on business
requirements, it enables the definition of rules that cover all
conceivable field-related validation tasks. The most compre-
hensive data validation possible is crucial to avoid security
risks and to ensure data integrity in business applications.

The language contains many predefined predicates. It sup-
ports nested comparisons, arithmetic operations and pro-
vides special operators for handling elements like dates. It
also supports special conditions for checking in which con-
figuration fields may or may not be specified. The various
subconditions and operations can be combined.

The modeling tools for document models support the lan-
guage directly. It has been successfully deployed for years
in large productive software systems. Our customers use it
in many projects to independently manage validation rules
and computations.

The language combines the simplicity of the propositional
logic with the expressiveness of the predicate logic. It is
particularly well suited for forms and strong typing in busi-
ness domains.

L1 mgm

Validation Rule Editor S M E

¥ General Information
Name*

TransportationOtherMustBeFilledinWhenOther

ID*
include_Bfel1_ruleimpl_b20db

¥ Rule Properties
Error Field*

BusinessTrip — TransportationOther v

Error Code*

Error rule_abb356

Error Condition
1 [[Transportation] == "OTHER" and FieldNotFilled(TransportationOther)

Level*
Er

ng

v Error Message

Locale Text*

en Please ype of rransportation

de Bitte geben Sie die Art des Transports an

> Description (Internal)

> Description (External)

Creating a rule in SME



4. Modeling Platform

The rule language has the
following key features:

@ Rule conditions describe errors — the end-user is thus shown messages related to the

specific error scenario

Use of logical connectives ‘And’ and ‘Or’ to combine different subconditions

Negation operations are not used. Instead, the different predefined conditions are each
provided in positive and negative form. This ensures that the subconditions are simpler
and are compiled in a more uniformly structured way. This makes the rule conditions
more readable and clearer.

Predicate logic quantifiers are not provided as formally logical parts of the language but
implicitly via operations. This ensures that the conditions are based on an expert’s
formulations and are therefore easier to understand.

The rule languages’ logic operations allow the tree and repetitive structures to be
queried directly

Supports set and filter operations on tree structures and repetitive structures, e.g. “add
up all capital gains from all equity funds”

Facilitate iterations via repetitive structures and shorten the control conditions

Computations and validations based on the same language, so the full validation
language can also be used for computation preconditions. All of the language’s set and
filter operations are available for formulating the computation operations and values
can be computed for all predefined field types

Features:

L mgm

©@ A powerful and versatile validation and computation language

© Auto-completion and syntax highlighting

© Predefined predicates for fields, lists of fields and groups that can be

combined freely

© Arithmetic operations, comparisons, special operators for processing

MODELABLE WITH A12

INDIVIDUALLY REALIZABLE

Domain expertise -
data models with validation
rules and calculations

Frame of an application
including placement of
model-driven engines

Forms, including
repeatable structures

Tabular overviews
of data sets

Tree-like overviews
of data sets

Relationships between

different model-driven components

Workflows following the
BPMN 2.0 standard

complex algorithms (e.g. generic
premium calculator in the insurance
environment)

placement of

simple widgets

definition or adaptation of design
elements



33

4. Modeling Platform

Simple Model Editor
(SME)

The Simple Model Editor (SME) is the control center for mod-
eling in A12. The tool enables business analysts and domain
experts to design and test key parts of business applications
themselves without any programming knowledge. A special
feature: The SME was built as a tool for A12 itself with A12.

n
SME

L1 simple Model Editor

Workspace Explorer
= @ VALIDATE B =
v [ advanced
v [ models
ﬂ PreviewApp_AM
Bl city om
ﬂ Cont»-

Country DM

Person DM
PersonEmployee DM

PersonFreelancer DM

E TeamPerson_LinkFields_DM

Team DM

[®] commonFieldDefinitions_TDM
A city v

ﬂ Contract_FM

Country_FM

PersonEmployee AddNew FM
PersonEmployee FM
PersonFreelancer AddNew FM

PersonFreelancer FM

Team AddNew FM

c

L mgm



4. Modeling Platform

Manage models within
a project workspace

— ®

®

Easy-to-use Workspace Explorer for
managing all A12 models

Create, delete, rename, move models
Support for model refactoring

~7
1 simple Model Editor N @130 -
Workspace Explorer cl =] B2 BX
= ©ao VALIDATE B DIFF = | search Model Q

&

v @ advanced

v pm models

A rreviewApp AM

B city om

B contract bm

B country bm

B rerson bm

B3 rersonEmployee DM

) Personfreelancer DM

B Team_bm

I TeamPerson_LinkFields DM
[® commonFieldDefinitions TDOM
A city rm

@ contract FmM

@ country FM

@ rersonEmployee AddNew FM
@ rersonemployee FM

@ Personfreelancer AddNew_FM
@ Personfreelancer FM

@ Team_AddNew_FM

@ team_fm

34

Model the domain-specific

L mgm

content of business applications Design online forms

@ Define data models for entities and relationships @
@ Descriptive perspectives: Model trees and field editors

@® Visual perspectives: Model Graph Diagram Editor @
® Rule editor for validations and calculations ®

with autocomplete

01 simple Model Editor

Data Modeling Perspective

WorkspaceModelGraph o ADD DIAGRAM

TeamPerson_LinkFiel

Person_DM

PersonFreelancer DM PersonEmployee DM

Quickly create forms by dragging and
dropping data fields

Live-Preview: Changes are immediately visible
Repeatable structures for data entries

with uncertain quantities

Country DM



4. Modeling Platform

Create tables
and tree-structures

® Modeling of data-driven overview tables
and tree-structures

® Easy-to-use features such as multi-selection, full-text
search, filters, etc.

@ Flexibly configurable buttons for custom actions

Model application frames

® Global layout settings
@® Definition of sub-regions such as content
area and sidebar
® Manage modules for essential areas of the application

Quality assurance:
testing modeled content

@® Ad-Hoc-Tests for targeted testing of selected
validations and calculations

@ Rule Contradictions Report uncovers contradictions in
rules that span multiple data fields

® Automatic detection of consistency
problems in models

35

L mgm

1 simple Model Editor

[ Person DM
A
"
& 3 Name Data Type
& Hodel Tree
* v O Person1]
¥= @ FirstName A string
B Lasteme String
8 e A Enumeration
@ contracténdbate Date
> ) Photo
B Name String
| © Namecomp
@ Weeklyworkhours Number
X}
e

o @130 -
Computation Rule Editor o
Basic Data Computation

Precondition Calculation i

Precondition

I Corrupt inpur or condition not complete (ye): Unexpected found . [MVK_UNEXPECTED_TOKEN]

1 AllFieldsFilled(Firsthame, LastName) and ﬁ I

@ Absvalue

@ addoays
€ AddHours

@ adduinutes
@ adduonths
D Addseconds

@ addvears
i & allFicldsilled
& AllGroupsFilled
3 fristiane] + 7 7+ (A2 I
© AtLeastoneDateRangeoverlaps
6 atLeastonerieldrilled
cLose (s IR |

[SME] Form Model Preview 11.3.0

/  VALIDATE

4O RESET

O wotH >
@ THeme >
XA LOCALE >

[ reaponLy

&Y SHOW EMPTY LABELS

n DATA >

© nowvae

Employee

] This field is required.
> Last Name.

Personal Data
Profile picture
First Name*

Max

=

Last Name*

I This field is required.

Gender

Male

Date of Birth

=]

Main Location

Nationality

v Deutsch

Place of Birth

Contract End Date

N ]

‘ TeamPersonTablelList



36

4. Modeling Platform

Provision of the
Modeling Environment

The A12 modeling tools were developed to be web-based
from the very start. They can be installed locally or ob-
tained as software as a service in the cloud version.

Installer:
Using Modeling Tools Locally

To be able to use the modeling tools of A12 locally, the A12
Installer is available. It bundles all relevant tools in one in-
stallation file. The installer is provided with each release of
A12 for Windows 10, macOS and Ubuntu Linux.

A set of included sample apps makes it easy to get started
and provides a starting point for your own modeled apps.
With the help of the included Preview App Control, mod-
eled programs (preview apps) can be executed locally in
the browser.

L mgm

PARTS OF THE INSTALLER

DESCRIPTION

Simple Model Editor (SME)

Camunda Modeler

Preview App Control

Workspaces

Modular tool that bundles numerous modeling functionalities of A12

Tool for modeling workflows

Application for running A12 applications in the browser

Sample applications (preview apps) that demonstrate the modeling scope

Reference to existing online documentation, which can optionally

Documentation

be installed locally as well

Cloud-based
modeling environment

The A12 modeling environment is also available as Soft-
ware-as-a-Service (SaaS) from the cloud - and can be used
without any installation. It can be accessed directly via the
browser. Once users have logged in on the start page of the
cloud offering, they are greeted by an administration inter-
face - the Cloud Modeling Control. New Cloud Modeling Envi-
ronment workspaces (CME workspaces) can be created here
and existing ones can be started. For new CME workspaces,
the familiar 5 sample workspaces from the local modeling
environment are available as a basis. After starting a work-

space, the Simple Model Editor (SME) opens in a new tab

and the Preview Application is available. The SME officially
supports the Chrome (Windows, Mac0S), Edge (Windows)
and Chromium (Ubuntu) browsers.



05

Runtime Platform

The A12 runtime platform consists of a set of modular client and
server side components in a modern enterprise architecture. It
provides robust components for typical enterprise application
requirements. At the same time, it gives the development team
full control through fine-grained entry points to plug in their own
code and implement individual project requirements.

L1 mgm



38

5. Runtime Platform

A Different Range of
Tasks for Developers

The model-driven approach also comes with a variety of
changes for developers, too. They are no longer solely re-
sponsible for building the whole application. Their work-
load is smaller, especially in relation to handling business
changes. The application can be compared to a play; the
models designed by the business analysts are like the pro-
tagonists in the limelight. The developers, however, make
it possible for the play to be performed at all. They prepare
the stage and make sure that the protagonists are shown
in the best light.

Modeled business expertise reduces workload

In a conventional software project, the development team
is responsible for coding the whole application on their
own. To do this, the team must understand the idea be-
hind the application down to the smallest detail. But that's
a massive challenge for highly complex application fields,
such as taxation or industrial insurance.

The model-driven approach changes this
situation. Business analysts and experts
map the business logic in models and put
them directly into the software.

This greatly lessens the developers’ load. They no longer

need to understand the modeled business aspects nor im-
plement it by hand. The focus of the work shifts.

L1 mgm

Connecting, maintaining and
extending the application platform

Projects based on A12 do not start off as greenfield proj-
ects. They build on an existing foundation. This foundation
isn't static; it's being constantly developed. One of the main
things that the developers have to do is to connect the foun-
dation (the project’s A12 application platform), maintain it
and, if necessary, extend it individually. The Technical Pro-
fessional Services Team provides support.

More complex functions and integration work

Developers also write code that implements more complex
functions. An example of this is a complex computation
that goes beyond the existing scope of the modelling tools.
Furthermore, one task still left to the developers is to in-
tegrate the application into the existing heterogeneous IT
landscape.



5. Runtime Platform

Traditional Approach vs. Model-Based Approach

Traditional BUSINESS DEVELOPMENT DEVELOPMENT
ANALYSTS TEAM TEAM CUSTOMER
approach

Customer Idea Requirement U.nderstand. Implementation Result L1
business details ooo

i

k Changes /

Model-based

Customer / The customer The result DEV Team
approaCh Expert and BA imple- is immediately develops

approaches ment the idea visible and can highly

Business together directly be improved in individual
© Requirements in Models Analyst in a model. an agile process. functions.

© Develop together

© Result visible immediately

© Agile and fast

Integrated
A12- @ Enterpri
prise
MODELS DEV @@ application
Versions
Results
\ Business Analysts =1
Customer Idea =|ooo
/ Customer’s experts —




40

5. Runtime Platform

Architecture

The development process of business applications is contin-
uously shaped by technological changes. A12 meets these
challenges and offers a runtime platform for modern, web-
based business applications. Starting from a robust core
and modular solution modules, we continuously advance
this platform on all levels. For this purpose, we adapt new
technologies and paradigms, as long as they contribute to
the goal of making the development of high-quality business
applications easier, more efficient and more sustainable.

We benefit from an important capability of the low-code ap-
proach: many of the most complex and important aspects
of the application are modeled in A12 and can thus be ex-
pressed in a largely technology-neutral way. In fact, even
complex forms solutions survive the technology shift from
JSPs and XForms (2012 and earlier) to Angular (circa 2015)
to React (2017 and later). The necessary foundations - the Ul
engines as runtime interpreters of models - change, but the
models remain.

The A12 Client Framework addresses the complexity
and challenges of modern web applications using the sin-
gle-page application (SPA) approach. It is also the basis for
quickly building modularized frontends (Microfrontends). It
leverages the modern and proven React/Redux technology
stack, integrates A12 Ul components such as Engines and
Widgets, and interacts with A12 backend services such as
A12 Data Services and Workflows using REST APIs. Data
and models are JSON data documents. Custom backends
can be easily connected, just as overall most aspects of the
A12 client framework can be customized or even overridden
through extension points. The server-side A12 services pro-
vide, among others, the data services for the aspects of data
storage, search, and model repository, as well as workflows
(Camunda/BPMN 2), authentication/login (LDAP, SAML,

L mgm

B8 B B8 06

Widget Widget Widget Widget @ {:’é}

6 6 6 6 Engine Engine

Widget Widget Widget Widget

SERVER
Rest API
En
App
JSON /XML Authentication Workflow
Data Document / Login (BPMN2)
Persistence Service (Qauth2 / JWT)
Redux S [=tempsly < CIB seven
fore7) .
NTLR ol

Apache Tomcat

React

OpenlID Connect, OAuth 2, JWT), and user/role management. cluding Postgres as database, Keycloak for access manage-
The services are built on Spring Boot and can be used out- ment and single sign-on, and CIB Seven as workflow engine.
of-the-box, but also easily extended with customer-specific
code. Behind this are supporting open source products, in-



4

5. Runtime Platform

Document-Oriented Data
Access and Model Graph

The A12 architecture is based on the concept of hierarchical
collections of field values in JSON documents (Documents
for short). Clients can access and store these Documents.
Document models (schemas) specify not only field types,
but also validation/integrity rules and computations in our
highly expressive kernel DSL (Domain-Specific Language).
These rules are automatically evaluated by the Form Engine
during form processing, for example. The Query API of the
A12 Data Services component allows you to filter queries for
A12 documents, links, and data graphs very precisely and
with minimal data usage. The query results can be sorted,
paginated, and restricted to specific fields.

® Relationships between Documents are fully supported;
Documents can be linked and relationship properties
and constraints can be modeled and are enforced by
A12 Data Services. Furthermore, there is an inheritance
concept (Subtyping) for Document models. This allows
more complex domains to be expressed as a graph of
Document models; we call this the Model Graph. Our
tree engine uses the model graph to represent linked
documents in a tree view, for example.

@ Thanks to the mentioned CDMs, views on the model
graph can be queried, analogous to GraphQL.

@ Batches: The A12 Data Services API provides a Batch
REST endpoint for transactional bundling of multiple
document operations, such as creating a new docu-
ment with simultaneous linking to another document.
There is also an operation to partially modify docu-
ments to reduce network traffic.

L mgm

Business-App
Type: App

Navigation
Type: Widget

Search
Type:Widget | | -

Interaction pattern

Behavior of the
components within
the application

A12 Frontends

The A12 architecture places a strong emphasis on sim-
plifying client-side application development. It provides
a field-proven application framework provided by the A12
Client Framework, Engines for working with models, and
Widgets for reusable Ul components.

The application framework uses an Application Model to
control the interaction of the Engines, such as in a Master/
Detail context. Written in TypeScript, the A12 client frame-
work is based on React and uses Redux for state manage-
ment and caching.

The framework offers a variety of integrations: a data ac-
cess abstraction “Data Provider” with built-in support for
A12 Data Services, the connection of process engines with
built-in support for CIB Seven/A12 workflows (such as task

@ regionsie Energie Business application
based on individual

models

Data Model & Business Validation

Overview Model Form Model

Overview Engine Form Engine

lists), an A12 Data Distribution Client (data sync, offline ca-
pability), and notifications via the Notification Center.

In addition, the A12 Client Framework offers many useful
and powerful features such as asynchronous flow control
using Redux Saga, dirty handling and undo mechanisms,
URL routing, a layout provider abstraction with responsive
defaults for desktop and mobile devices, and localization.

An A12 Frontend Client can be modularized according to
the Microfrontend pattern. For this purpose, we technically
use “Module Federation” from Webpack and have devel-
oped an application module registry based on it, allowing
dynamic integration of these modules, for example accord-
ing to user roles.



L mgm

5. Runtime Platform

A12 Backend Services

The fundamental backend service is A12 Data Services.
It provides access to models and Documents and also
handles login with SSO support and optional Keycloak in-
tegration (LDAP, SAML, Openld Connect, OAuth 2, JWT).
The APlIs are available as stateless REST endpoints and in
Java. Persistence of Data Documents is supported by a set Models incl. Single Batch (Query/Mutations)

. . Logi i
of reliable technologies such as PostgreSQL. ogin Model Graph Documents for Documents and Links

A12 Data Services, like all other server-side A12 services,

leverages the Spring Boot framework and is available in three
forms: as a standalone application, as a Spring Boot project :

for project-specific applications with custom code, or as a . . . Extension points: »
. . ) - . : i - E ions 3
library to leverage selective features in existing Spring ap- : Login Model Document xecutionSteps ) 3
licati dditi h . . . Service Service Service + Custom Batch Operations g
plications. In addition, there are numerous extension points . . Custom Persistence Drivers o
and a comprehensive event system for easy integration of . \L J/ Event e
. " Q
custom code handling before and after operations. Delivery 2
Model '%
N . Document h . L
For scaling, the services can be operated in a Hazelcast : others Pers(':;?"ce Persistance Searc : g
cluster. Such a cluster can then be dynamically adapted :
to the load under Kubernetes. Our A12 Project Template al- : A12 SERVICES .
ready offers configurations for this.
Other server-side A12 services include A12 Workflows
(based on CIB Seven/BPMN 2) and the A12 User Manage- Authentification & it
mentServicewith IDP support(Keycloak). Thereisalso A12 Authorization (Pos?;e:?‘s;u Search Engine Messaging
Data Distribution, a highly scalable data distribution and (Keycloak)
sync solution with offline client capability. The Notification
Service uses A12 Data Distribution for notification delivery.
The A12 Kernel is used on the client and server side. It val- for both client and server. On the Frontend, the rules and

idates data and computes derived data based on rules and calculations are executed as native JavaScript, providing
field types described in data document schemas (called immediate feedback to the user during form processing.
Document Models). Code generation ensures native code



43

5. Runtime Platform

Project Scenario
for the Use of A12

Thanks to its modular design, A12 can be used very flexibly
and is also ideally suited for Microservice architectures and
Microfrontends with extensive support in the framework.
The following diagram demonstrates how the building
blocks of A12 can interact with project-specific extensions
and services as well as third-party components in a Micro-
service context:

About the Frontend: The resulting web application is dynam-
ically composed of several parts and corresponding fron-
tend projects: the application shell and two Microfrontends
provided by the customer’s own Microservices (A and B).

A12 components are used: the widgets and engines are
customized and the A12 client framework is extended to
meet the respective project requirements. For example,
one can query data from the REST APIs of one’s own mi-
croservices and prepare it as JSON documents via data
provider abstraction, making it accessible to the engines.

The server side consists of

. A12 services with optional project-specific
customizations and

. any project-specific services (e.g. as Microservice)
with or without A12-specific extensions (e.g. the A12
Kernel as library or A12 Data Services as dependency).

CLIENT

SERVER

A12
Workflows

MyApp

L mgm

CIB Seven

Il Projektspezifische Services

Il A12 Services
. 3rd-Party Services

7z

A12
Data Services

Postgres

Service A Service B
X Y



5. Runtime Platform

Components

A12’s runtime platform is modular and consists
of a series of loosely interconnected compo-
nents. Depending on the situation, they can be
used flexibly in the project, even individually.

Most projects use the Client-Engine-Widget
trio. Some projects use the back-end and server
services provided by the Data Services module.
Others write their own server depending on their
requirements.

Client

Frontend
Application

Widgets
Reusable Ul
Components

Model-Driven Ul

Identity & Access
Management

Domain Specific
Language (DSL)

Backend / Server

Process Automation

Content Management

Synchronization
of Mobile Data

Centralized Notification
Management

L mgm



45

5. Runtime Platform

L mgm

COMPONENT ABBREVIATION DESCRIPTION
Model-driven, client-side runtime component. Implements the Ul/UX concept of the Plasma
Client Design System and supports desktop, tablet and smartphone. Main tasks are the orchestration of
other Ul components, especially the A12 engines, data retrieval and state management.
Enai Model-driven Ul components. Engines interpret data and Ul models.
ngines
9 They are based on the Plasma UI/UX concepts and use the widgets for rendering.
Widget Library, based on Plasma UI/UX concepts.
Widgets See also — A12 Widget Showcase.
K | Bundles everything for the creation and processing of document models: modeling tools, language for
erne

Data Services

User Management, Authentication

and Authorization

Workflows

Data Distribution

Notification Center

Content Management System

=z
(7]

CMS

validations and calculations, client- and server-side runtime components, Java and Typescript API.

API for managing models and data. It also contains routines for client/server
communication, validation, persistence and indexing.

Bundles solutions around authentication (Keycloak, OAuth 2.0, SAML, LDAP),
authorization (Spring Security, RBAC, ABAC, custom logic) and user management

Integration of Business Process Model and Notation (BPMN) in A12;
enables graphical modeling of server-side workflows and their execution

Transport layer for synchronization of data

Communication center for notifications such as tasks, appointments and reminders

Lightweight content management system


https://a12.mgm-tp.com/showcase/#/

46

5. Runtime Platform

W' Content Management
System (CMS)

Modern web applications always include textual and visual
content - be it in the form of an imprint for publicly acces-
sible websites, a customized start page or a news and blog
section. To manage such content, A12 offers a new, light-
weight content management system (CMS). It provides a
lean and integrated solution for A12 applications that con-
tain editorial content. The CMS consists of an editor that can
be used to manage and design pages and a content engine
as a runtime component which interprets Content Models.

U1 GETA12 CONTENT MANAGER

Pages Fragments Blog Posts

Content Page

Content Metadata
“ XD ]
Components
v O Box
v @ G
v = Row
1 Column
v 1 coumn
v @ o
v = fow
v 1 Columy
B
D Paragraph
@ Heading
@ Paragraph
v 1 Coumn
@ image
v @ o
v = Row
v 1 comn
© image

@ Heading

@ image

@ Heading

New to GetA12?

Get started here

GetA12 is the portal where mgm provides A12 resources
for all A12 users, such as the installation packages for
the A12 modeling environment and the user
documentation for the platform. You can find links to
important resources such as Discourse and Artifactory.
If you are new to A12 and not sure where to start, keep
reading. All onboarding material can be found below.
So, what is A12? A12 is an extensible low code
development platform for web-based business
applications. It provides developers with a set of robust,
secure, and scalable components as well asa
dlient/server application infrastructure. A12 enables
business analysts to define large parts of the
application independently and conveniently using
models thanks to special editors.

E] A12 Intro Videos A12 Documentation

If you are new to the A12 Platform, Here is where you find the user
don'tworry, you can find everything  documentation for A12.
you need to get started here. Overail

Modeling

Development

Check out the series of A12

Useful Links

(2

If you're looking fc
content, here are s
to often used resources.

Discourse

Blog

cose O
Box
v Layout
Direction ]
Distrbution st v
Alignment - K]
Gop o)[m v
wiap v [
v Dimensions
width 0% v
Height e v
Padding o[ v
Margin o[ v
°
o 6 m & &
> Color
v Background Image
URL
Repeat
size
Horizontal Position
Vertica Psition
> Border
v Shadow
— I —



47

5. Runtime Platform

m Widgets

Widgets are reusable Ul components that follow Plasma de-
sign conventions and UX concepts. They support enterprise
applications that run on desktops, tablets and smartphones
with keyboard, mouse and touch input. The components
provide an easy-to-use, well documented, strongly typed API
and are extensible and customisable.

PROGRAMMING
LANGUAGE

TypeScript

@ React
72 &> Redux
Features:

Desktop, tablet and smartphone support
Keyboard, mouse and touch

Accessibility

®

®

®

® Browser compatibility
® Programming API
® Extendable

®

Seamless integration with
A12 engines and servers

CLIENT

SERVER

L mgm




5. Runtime Platform

H Engines

A12 engines are implemented in TypeScript. They are
self-contained runtime components that interpret data and
Ul models. They are based on Plasma UI/UX concepts and
use widgets for rendering.

48

L mgm

PROGRAMMING
LANGUAGE

TypeScript

| 1]
VIEW
@ React
CLIENT
SERVER
STATE
((}\) Redux
Features:
® Rendering based on A12 Widgets
® View and behavior declared by Ul models
® Based on data models
® Ul model editors
® Integrated Kernel based
Validation & Computation
® Accessibility
® Rapid prototyping
® Programming API
® Extensibility
® UI/UX concept based on A12 Plasma
e e — e ——



49

5. Runtime Platform

Client

The model-driven, client-side runtime component makes it
possible to declare the core aspects of the application, the
modules, the navigation, the screens and the most important
interaction patterns. Its main task is orchestrating other Ul
components, especially the A12 engines.

It also organises handling requests, data retrieval and pro-
cessing, and status management. The client component
implements the Plasma design system UI/UX concept and
supports desktops, tablets and smartphones.

L mgm

PROGRAMMING

LANGUAGE .
TypeScript
VIEW
@ React
CLIENT
SERVER
STATE

g@) Redux

ASYNCHRONOUS
PROCESSES (..\\.ﬁ\
U\J

Features:

C)
C)
C)
C)
C)
C)
C)
C)
C)

Framework for client applications

Driven in part by an application model
State management & dirty handling
Asynchronous background processes
Navigation & routing

Screen composition & layout

Desktop, tablet und smartphone support
Notifications / Localization / Logging

Ul/UX concept based on A12 Plasma



50

5. Runtime Platform

n Kernel

The kernel component bundles basic functions for creating
and processing data models. Above all, it defines A12’s do-
main-specific languages (DSL).

This includes all bases for validations and computations
that are part of business modeling. The component includes
client and server-side runtime components and a Java and
TypeScript API.

PROGRAMMING
LANGUAGE

éﬁ Java TypeScript

Features:
Data model driven
Data model editor

Field type checking

Validation and computation

Client and server-side runtime components

®
®
®
@ Field type conversion
®
®
®

Programming API (Java and TypeScript)

The kernel component includes the A12 DSLs,
among other things

L mgm

CLIENT

SERVER



51

5. Runtime Platform

n Data Services

The Data Services component provides an API for managing
models. It also includes routines for client/server communi-
cation, authentication, authorisation, validation, persistence
and indexing. It is programmed in TypeScript for the client
side and in Java for the client and server side.

The services component provides central server-side
services

PROGRAMMING
LANGUAGE

TypeScript

APPLICATION SERVER

P

Apache Tomcat

DATABASE
PostgreSQL

Features:
® Access to models and documents
@® Client/server communication
@® Validation & computation (based on Kernel)
® Persistence
@ Indexing & Search
® Import / Export
@ Logging
® API
®

Configuration

CLIENT

SERVER

o

P

L mgm




5. Runtime Platform

User Management,
Authentication
& Authorization (UAA)

A12 uses Keycloak, a tried-and-tested open-source solu-
tion, for authentication. It also supports both OAuth 2.0 with
OpenlID and SAML token-based SSO authentication and con-
nection to LDAP.

A12's UAA components also provide a highly flexible and pow-
erful authorisation solution, which can provide access rights
in different levels of granularity. Both role-based and more
complex, attribute-based rules can be specified, thus protect-
ing access down to the field level of data documents.

The UAA component is supplied as a library. It can therefore
be integrated both in the A12 server and in the application’s
standalone services. The access rules and other authorisa-
tion configurations are sourced from a policy repository.

The UAA solution is based on the well-known NiST ABAC ref-
erence architecture.

L mgm

Authorization Services

. Policy Enforcement : .
Subject N Point (PEP) . « Object
l T : i
Policy Decision Point
(PDP)
Policy Administration Point N Policy Policy Information Point ¢ Environment
(PAP) Repository (PIP) Conditions

Attribute

Repository

The UAA solution is based on NiST ABAC reference architecture



53

5. Runtime Platform

m Workflows

A12 Workflows provide a lightweight service that integrates
business process model and notation (BPMN) modeling func-
tionality into A12. This makes it possible to perform graphic
modeling of server-side workflows and their execution.

The A12 workflow service can be activated as an extension
to other A12 products and integrates seamlessly into the
A12 architecture.

In this manner, documents can be used as inputs and out-
puts for A12 workflows, and the user interface for user tasks
can be created using the existing A12 modelling approach.

In addition to user tasks, automatically executable tasks
such as service tasks or script executions can also be
modeled, allowing the realisation of partially and fully au-
tomated workflows using process modules. CIB Seven's
BPMN Workflow Engine is used as a central component of
A12 workflows.

Features:

Model driven business processes

Server side / asynchronous / semiautomated
BPMN2

CIB Seven process engine

Camunda model editor

® ® ® ® ® @

Integrating with A12 modeled data

Historie versionen ® C <

Definition der Version: 3
Laufende Instanzen: 1
Gesamtanzahl der Instanzen: 2

Definition der Version: 2
Laufende Instanzen
Gesamtanzahl der Instanzen: -

Definition der Version: 1

Laufende Instanzen
Gesamtanzah! der Instanzen: -

Status

Business key

& startdatum

11. November 2024 1301

8 November 2024 0925

L mgm

Enddatum

11 November 2024 13:01

L + Bomn

D Benutzer

b72(e25-a024-11ef-8450-064c6..  ahe-demo

186897d2-0daa-116f-845b-e64c6...  flow

Aldionen
® © O

® 0



L mgm

5. Runtime Platform

ﬂ Data Distribution

Fast and secure synchronization of data is one of the most de-
manding technical tasks in full-blown business applications
- especially when not all systems involved are permanently synchronize data

% Offline Support
online. The Data Distribution component of A12 is a transport between two devices

 \ =

from server — - .

layer that specializes in exactly this. The technical service is

designed to distribute data between servers and clients and
. . . . Data send

to propagate changes - especially in scenarios where clients ® 1T SaEr

are temporarily offline. The component’s origins lie in an

e-commerce project, in which it manages the data synchroni-

U, =
-

zation of a global store network.

Not included in A12 Platform license — s — — —



55

5. Runtime Platform

Notification Center

In the context of business applications, employees are typ-
ically flooded with a number of different messages. There
is information about new tasks, messages from various
communication channels, as well as appointments and re-
minders. With the Notification Center, all these messages
in business applications can be bundled in one central lo-
cation. It serves as a collection point for different types of
notifications based on different business use cases, struc-
tured views, different filters and user preferences. The No-
tification Center integrates seamlessly with A12-based ap-
plications. It provides several predefined notification types.
Using the Notification Center’s API, the development team
can also create their own custom notification types quickly
and conveniently.

Not included in A12 Platform license

PROGRAMMING

LANGUAGE Typescrlpt
@ React

@3 Redux

ASYNCHRONOUS
PROCESSES O(\\

BACKEND

PostgreSQL @gg;!tng

4 Unread Notifications

UNREAD ALL

Close the Request
Anmeldung zur Buchmacherseuer

(3 04/07/2023

admin

Check for the completeness of the
information

Anmeldung zur Buchmacherseuer

(3 04/07/2023

admin

Clarify with the tax payee
Anme}d\.".g zur Buchmacherseuer

(3 04/07/2023

admin

Clarify with the tax payee
Anmeldung zur Buchmacherseuer

(3 04/07/2023

admin

L mgm

L3

Q




56

5. Runtime Platform

Project Template

The A12 Project Template provides a starting point for de-
velopment teams to conveniently set up A12 projects and
quickly bring A12 applications into production. Among oth-
er things, it contains standardized build pipelines as well
as development and test environments and covers basic
security requirements. At its core, the template includes
the A12 components Data Services, Client and UAA. Key-
cloak is set as the identity provider, and the authentication
type is OpenlDConnect/Oauth2 in the default case. Option-
al components such as workflows, the Notification Center
and the Print Engine can be integrated in a standardized
way if required.

Utility for Gradle

Client HEl Server
src init
—P1  Frontend code | —P| Optional model and
Application setup documents initialization
scripts 2
—! Utility for Webpack & — 2P
Gradle ackend code
resources
—P| Static resources |
index.html | images
buildSrc

import

A12 models | Authorization configuration files

compos

e

Docker Compose configuration

quality

Checkstyle configuration files | OpenRewrite recipe for applying
CheckStyle recommendations

L mgm



57

5. Runtime Platform

Operations

@@Build

Resolve dependencies

Compile / Package

Jjar, static Assets,
Docker-Images...

B @

o D

<> HELM

& 32 D
Check out Check out Provide

Source Code Test Code Helm Charts

< Git-Repos

W Bitbucket

The A12 platform can be run on-premise in the company’s
own or external data center. In addition, mgm offers hosting
in mgm'’s private cloud in a data center in Germany. Another
option is to run it in the cloud with any cloud provider.

Q\/ Test

02

Execute tests on
artifacts and mark
deployable artifacts

Get Docker Images
and binary data

L mgm

Provide deployment
configuration for
target environments

Binary-Store

JFrog

—— ARTIFACTORY

Cluster capability - A12 is Kubernetes-ready

A12 applications are designed for deployment on Kuberne-
tes clusters. Built on the A12 project template, A12 provides
a standardized way to build and deploy applications to all
common development and production environments (DEV,
TEST, and PROD clusters).

Operationally, the process involves the following four steps,
each of which follows proven standards.

Build — from source
code to artifact

The build phase is triggered at different times in different
stages - e.g. when developers commit and push their code
changes to the project’s Git repository. In addition, the A12
templates for build and deployment also take into account
nightly, feature, and release builds. During the build process,
dependencies are first resolved before the code is compiled
and packaged. The build pipeline then creates a Docker im-



58

5. Runtime Platform

age that encapsulates the application artifact along with its
runtime dependencies. The resulting Docker image and all
other build outputs — such as JAR files or static assets — are
published in the binary store (mgm uses Artifactory by de-
fault). Each build is tagged with detailed metadata - includ-
ing the Git commit hash, build timestamp, version, and build
number — which links each artifact in Artifactory directly to
the corresponding source code in Git.

Testing — Automated
quality assurance

The testing phase consists of several steps to ensure that
only quality-assured builds progress through the pipeline.
Test types include unit tests, integration tests, end-to-end
tests, load tests to identify performance degradation from
one version to another, and security tests. All test code -
from unit tests to integration tests to end-to-end tests - is
stored in Git together with the application code, ensuring
that the tests remain synchronized with the corresponding
application version. The tests are performed using the arti-
facts created in the build phase and retrieved from Artifac-
tory. This ensures consistency between what is tested and
what is ultimately deployed. Only artifacts that pass all man-
datory tests are marked as ready for deployment.

Deploy — Configuration
and transfer to the target
environment

The deployment phase essentially consists of two steps: de-
termining the configuration of the application components
for specific target environments and transferring the compo-
nents to the respective target environments. The Helm A12
Stack is available for configuration, enabling out-of-the-box
Kubernetes deployment.

& @press
Dependencies "E,,.
- o
JFrog Xray Jfrog Artifactory
e o s (]

Bitbucket JFrog Arti System o

1.0.01123 Code Metrics Quality

Coverage Cales

Jenkins
Clone

https:// Build Unittest

MGradle |UNit@  mogaifactory

Jenkinsfile

In addition to a repository for the program code, each A12
project includes a repository for configuring the environ-
ments in which the software is deployed. This keeps the
code and configuration neatly separated. Changes to the
configuration also automatically trigger specific Jenkins
jobs. For example, adjusting the TEST configuration triggers
a specific version to be installed in the TEST environment.

At the same time, it is always transparent who deployed
which version and when. During deployment, the pipeline
retrieves the built and tested Docker images and necessary
binary files from Artifactory. Using the configuration data
from Git, Jenkins scripts address the respective target en-
vironments — such as TEST, STAGE, or PROD - on the corre-
sponding clusters.

Each deployment is carefully logged, ensuring complete
traceability. In the event of problems, deployments can be
rolled back to earlier artifact versions using Artifactory’s ver-
sioned storage and Git's comprehensive history.

System
load
i
HELM
~<

o

JFrog Artifactory

Run - Reliable operation
in the cluster

Finally, the run phase comprises the ongoing monitoring
and scaling of the applications in production. A12 relies on
proven standards for logging and monitoring, among other
things. If the respective operating environment does not
specify specific logging and monitoring solutions, A12's
standardized logging and monitoring setup (based on Loki
and Prometheus) can be used. The status of the entire sys-
tem can be checked at any time via Grafana dashboards.

If urgent corrections or updates are required, new code is
committed to Git, which automatically triggers the entire
build, test, and deployment pipeline so that updated artifacts
are published in Artifactory and redeployed.



5. Runtime Platform

Hosting options for
multiple A12 applications

There are a number of options for
hosting multiple A12-based applications:

@ Isolation via user rights and
otherwise “mixed operation”.
It is possible to run a central A12 platform running
multiple separate A12 applications. If, for example,
users have access to several specialist applications,
the data and model view could be controlled via rights.
Services used across all applications can also be
shared.

@® Isolation through separate deployments
If the A12 applications are to be run in isolation from
each other, the A12-specific services (database, Solr,
etc.) must be deployed separately for each separate
runtime environment.

Modularization of deployed artifacts

The frontend part of an A12 application can be deployed as
an NPM package. The models are deployed separately in
the corresponding servers: the workflow model is installed
(or updated) in Camunda and the data/form models are
injected into the A12 Platform server (via the import API
using REST call).

For the communication with surrounding
systems several options are possible:

® Make data from the peripheral system
available to the client as A12 Documents.

Option 1: Peripheral system actively pushes data
The data from the peripheral system is actively made
available by the surrounding system, e.g. via JMS
messaging (transactionally secure) directly to the A12
server (which is extended by JMS listeners for

this purpose). Or by calling the data services APIs
remotely on the side of the surrounding system.

For this purpose we offer a JSON-RPC API with CRUD
and other operations. These operations can be

sent in batch, which are then processed in a common
transaction. But you can also define your own Spring
MVC REST endpoint or JSON-RPC “Custom Operations”
- this is successfully practiced in many projects.

Option 2: A12 Data Server calls repository

on demand (“replaces database”).

One can easily implement a custom Spring repository
for a document type that redirects CRUD and list
operations to the Umsystem. The repository would
then not use JDBC, but work via messaging (JMS)

or REST/SOAP. Note here that only JMS messaging
runs in Java EE transactions.

L1 mgm

@® Offer operations of the surrounding system “directly
If the peripheral system is more likely to offer
operations, or the data is to be seen directly by the
client (i.e., not as A12-compliant documents), then one
can provide a server-side service to the client that
serves as a facade/adapter between the client and the
surrounding system.

As a standalone service, this service can be

provided via Spring Boot or based on another
framework or a non-JVM runtime. Authentication and
authorization is provided via A12 UAA. The service can
implement the calls internally as desired. REST or
better JSON-RPC is recommended as endpoints visible
to the client.

@ Direct call of the surrounding
systems from the client
This is technically possible. However, direct access to
backend systems without UAA is not recommended
due to security concerns and SSO/CORS complications.



Appendix A: Technologies

The separation of business expertise and technology allows the
technologies used to be exchanged as required. On the following
pages you will find an overview of the current A12 technology stack.



61

6. Appendix A: Technologies

Technologies currently in use

L mgm

n Kernel

A12 PRODUCT TECHNOLOGY DESCRIPTION
Java
Typescript
Groovy
Antir Parser generator
StringTemplates Template engine
JAXB Mapping Java objects to XML
Jackson JSON processor for Java
m Widgets Typescript
React Building Uls
Styled Components CSS styling
Recharts Chart library
Lexical An extensible text editor framework
React-Dnd Drag and drop handling

- I

React-virtualized
Material Icons
Typescript
Redux
oidc-client-js
Java

Spring

Spring Boot

Rendering partial data into DOM

Icon set

State management

OpenldConnect authentication protocol

Application framework for the Java platform

Auto configuration for Spring application



62

6. Appendix A: Technologies

E Data Services

Workflows

Spring-security
KeyCloak
OAuth2/0peniD
SAML

LDAP

Java

Apache Tomcat
Eclipse Jetty
PostgreSQL
Spring Security
Spring Boot
Typescript APl
Kotlin

Spring

Spring Boot
CIB Seven
Typescript
React
Webpack

NPM

Spring security approach for authorization (SpEL - Spring Expression)

Identity and access management
Protocol for authentication

Protocol for authentication

Protocol for accessing and maintaining distributed directory information services over an IP network

Application server
Application server

Database

Authentication, authorization

Auto configuration for Spring application

Application framework for the Java platform

Auto configuration for Spring application

Platform for BPMN workflow and DMN decision automation
Frontend

Building Uls

JavaScript module bundler

Package manager for JavaScript

L mgm



63

6. Appendix A: Technologies

n Overview Engine

ﬂ Form Engine

Tree Engine

Typescript

React

React-Dnd
React-virtualized
Redux
TypeScript
JavaScript
NodeJS

NPM

Webpack

React

Redux

Marked

Jison

moment.js
Typescript

React

React-Dnd
React-virtualized

Redux

Building Uls
Drag and drop handling
Rendering partial data into DOM

State management

Java runtime environment
Package manager for JavaScript
JavaScript module bundler
Building Uls

State management

Markdown in expression language
Expression language

JavaScript wrapper for the date object

Building Uls
Drag and drop handling
Rendering partial data into DOM

State management

L mgm



64

6. Appendix A: Technologies

w Simple Model Editor

Runtime

Typescript

JavaScript

TSLint

NodeJS

NPM

Lerna

Webpack

React

Redux

Inversify

A12

Typescript

React

Redux

Redux Saga

Docker / Docker-compose
Kubernetes

Prometheus

Grafana

ELK (Elastic, Logstash, Kibana)

Ansible

Analysing Typescript

Java runtime environment

Package manager for JavaScript
Managing multi-package repositories
JavaScript module bundler

Building Uls

State management

Configuration injection

Frontend

Building Uls

State management

Library used to handle side effects in Redux

Defining and running multi-container Docker applications
Managing containerized workloads and services
Systems monitoring and alerting toolkit

Analytics & monitoring

Log management

Automating configuration management & application deployment

L1 mgm



L mgm

mgm technology partners GmbH
Taunusstr. 23

80807 Munich

Germany

Tel +49 89 /3586 80-0
www.mgm-tp.com
info@mgm-tp.com

Innovation Implemented.



